|
|
@ -11948,14 +11948,18 @@ $N'$ such that $N' \approxa \sdtrans{N}$ and $M' \reducesto^+ N'$. |
|
|
$\semlab{Op^\dagger}$, which uses Lemma~\ref{lem:sdtrans-admin} to |
|
|
$\semlab{Op^\dagger}$, which uses Lemma~\ref{lem:sdtrans-admin} to |
|
|
approximate the body of the resumption up to administrative |
|
|
approximate the body of the resumption up to administrative |
|
|
reduction. |
|
|
reduction. |
|
|
% $\ShallowHandle\;\EC[\Do\;\ell~V]\;\With\;H \reducesto |
|
|
|
|
|
% N_\ell[V/p,\lambda y.\EC[\Return\;y]/r]$ where |
|
|
|
|
|
% $\ell \notin \BL(\EC)$ and |
|
|
|
|
|
% $H^\ell = \{\OpCase{\ell}{p}{r} \mapsto N_\ell\}$. |
|
|
|
|
|
% % |
|
|
|
|
|
|
|
|
\begin{description} |
|
|
|
|
|
\item[Case] |
|
|
|
|
|
$\ShallowHandle\;\EC[\Do\;\ell~V]\;\With\;H \reducesto |
|
|
|
|
|
N_\ell[V/p,\lambda y.\EC[\Return\;y]/r]$ where |
|
|
|
|
|
$\ell \notin \BL(\EC)$ and |
|
|
|
|
|
$H^\ell = \{\OpCase{\ell}{p}{r} \mapsto N_\ell\}$. |
|
|
|
|
|
% |
|
|
% \begin{derivation} |
|
|
% \begin{derivation} |
|
|
|
|
|
|
|
|
% \end{derivation} |
|
|
% \end{derivation} |
|
|
|
|
|
\dhil{Write the proof sketch} |
|
|
|
|
|
\end{description} |
|
|
% |
|
|
% |
|
|
\end{proof} |
|
|
\end{proof} |
|
|
|
|
|
|
|
|
@ -12153,8 +12157,9 @@ setting. The work in this chapter has a similar flavour to |
|
|
static control facility and shallow handlers as a kind of dynamic |
|
|
static control facility and shallow handlers as a kind of dynamic |
|
|
control facility. In order to simulate dynamic control using static |
|
|
control facility. In order to simulate dynamic control using static |
|
|
control, \citeauthor{Shan04}'s translation makes use of recursive |
|
|
control, \citeauthor{Shan04}'s translation makes use of recursive |
|
|
delimited continuations, which allow the captured context and |
|
|
|
|
|
continuation invocation context to coincide. |
|
|
|
|
|
|
|
|
delimited continuations to construct the dynamic context surrounding |
|
|
|
|
|
and including the invocation context. A recursive continuation allows |
|
|
|
|
|
the captured context and continuation invocation context to coincide. |
|
|
|
|
|
|
|
|
% \chapter{Computability, complexity, and expressivness} |
|
|
% \chapter{Computability, complexity, and expressivness} |
|
|
% \label{ch:expressiveness} |
|
|
% \label{ch:expressiveness} |
|
|
|