|
|
|
@ -596,13 +596,16 @@ to $\alpha$-conversion~\cite{Church32} of types. |
|
|
|
\paragraph{Type substitution} |
|
|
|
We define a type substitution map, |
|
|
|
$\sigma : (\TyVarCat \times \TypeCat)^\ast$ as list of pairs mapping a |
|
|
|
type variable to its replacement. The domain of a substitution map is |
|
|
|
set generated by projecting the first component, i.e. |
|
|
|
type variable to its replacement. We denote a single mapping as |
|
|
|
$T/\alpha$ meaning substitute $T$ for the variable $\alpha$. We write |
|
|
|
multiple mappings using list notation, |
|
|
|
i.e. $[T_0/\alpha_0,\dots,T_n/\alpha_n]$. The domain of a substitution |
|
|
|
map is set generated by projecting the first component, i.e. |
|
|
|
% |
|
|
|
\[ |
|
|
|
\bl |
|
|
|
\dom : (\TyVarCat \times \TypeCat)^\ast \to \TyVarCat\\ |
|
|
|
\dom(\sigma) \defas \{ \alpha \mid (\alpha,\_) \in \sigma \} |
|
|
|
\dom(\sigma) \defas \{ \alpha \mid (\_/\alpha) \in \sigma \} |
|
|
|
\el |
|
|
|
\] |
|
|
|
% |
|
|
|
@ -616,7 +619,7 @@ structure as follows. |
|
|
|
\begin{eqs} |
|
|
|
(A \eff E)\sigma &\defas& A\sigma \eff E\sigma\\ |
|
|
|
(A \to C)\sigma &\defas& A\sigma \to C\sigma\\ |
|
|
|
(\forall \alpha^K.C)\sigma &\defas& \forall \alpha^K.C\sigma \quad \text{if } \alpha \notin \dom(\sigma)\\ |
|
|
|
(\forall \alpha^K.C)\sigma &\defas& \forall \alpha^K.C\sigma \quad \text{convert if } \alpha \in \dom(\sigma)\\ |
|
|
|
\alpha\sigma &\defas& \begin{cases} |
|
|
|
A & \text{if } (\alpha,A) \in \sigma\\ |
|
|
|
\alpha & \text{otherwise} |
|
|
|
@ -944,9 +947,47 @@ $\Record{\ell : \Abs; R}$ must be well-kinded with respect to |
|
|
|
$\Delta$, the label $\ell$ cannot be mentioned in $W$, thus $\ell$ |
|
|
|
cannot occur more than once in the record. Similarly, the dual rule |
|
|
|
\tylab{Inject} states that the injection $(\ell~V)^R$ has type |
|
|
|
$[\ell : \Pre{A}; R]$ if the payload $V$ is well-typed. Again since |
|
|
|
$[\ell : \Pre{A}; R]$ is well-kinded, it must be that $\ell$ is not |
|
|
|
mentioned by $R$. In other words, the tag cannot be injected twice. |
|
|
|
$[\ell : \Pre{A}; R]$ if the payload $V$ is well-typed. The implicit |
|
|
|
well-kindedness condition on $R$ ensures that $\ell$ cannot be |
|
|
|
injected twice. As an example consider the following ill-typed |
|
|
|
injection into a singleton variant type |
|
|
|
% |
|
|
|
\[ |
|
|
|
(\dec{S}~\Unit)^{\dec{S}:\UnitType} : [\dec{S}:\UnitType;\dec{S}:\UnitType]. |
|
|
|
\] |
|
|
|
% |
|
|
|
Typing fails because the resulting row type is ill-kinded by the |
|
|
|
\klab{ExtendRow}-rule: |
|
|
|
\begin{mathpar} |
|
|
|
\inferrule*[] |
|
|
|
{\inferrule*[] |
|
|
|
{\vdash \Pre{\UnitType} : \Presence \\ |
|
|
|
\inferrule*[] |
|
|
|
{\vdash \Pre{\UnitType} : \Presence \\ \vdash \cdot : \Row_{\color{red}{\{\dec{S}\} \uplus \{\dec{S}\}}}} |
|
|
|
{\vdash \dec{S}:\Pre{\UnitType};\cdot : \Row_{\emptyset \uplus \{\dec{S}\}}}} |
|
|
|
% {\inferrule[] |
|
|
|
% {\vdash \UnitType : \Type} |
|
|
|
% {\vdash \Pre{\UnitType} : \Presence} |
|
|
|
% \\ |
|
|
|
% \inferrule*[] |
|
|
|
% {\inferrule*[] |
|
|
|
% {\vdash \UnitType : \Type} |
|
|
|
% {\vdash \Pre{\UnitType} : \Presence} |
|
|
|
% \\ |
|
|
|
% \inferrule*[] |
|
|
|
% {} |
|
|
|
% {\vdash \dec{None} : \Pre{\UnitType} : \Row_{\{\dec{Some}\} \uplus \{\dec{Some}\}}} |
|
|
|
% } |
|
|
|
% {\vdash \dec{Some}:\Pre{\UnitType};\dec{None}:\Pre{\UnitType} : \Row_{{\emptyset \uplus \{\dec{Some}\}}}} |
|
|
|
% } |
|
|
|
{\vdash \dec{S}:\Pre{\UnitType};\dec{S}:\Pre{\UnitType};\cdot : \Row_{\emptyset}} |
|
|
|
} |
|
|
|
{\vdash [\dec{S}:\Pre{\UnitType};\dec{S}:\Pre{\UnitType};\cdot] : \Type} |
|
|
|
\end{mathpar} |
|
|
|
% |
|
|
|
The two sets $\{\dec{S}\}$ and $\{\dec{S}\}$ are clearly not disjoint, |
|
|
|
thus the second premise of the last application of \klab{ExtendRow} |
|
|
|
cannot be satisfied. |
|
|
|
|
|
|
|
\paragraph{Typing computations} |
|
|
|
The \tylab{App} rule states that an application $V\,W$ has computation |
|
|
|
|