|
|
|
@ -10859,59 +10859,73 @@ Figure~\ref{fig:abstract-machine-syntax}. |
|
|
|
% notion of continuation to accommodate handlers. |
|
|
|
% |
|
|
|
% |
|
|
|
\begin{figure}[p] |
|
|
|
\dhil{Fix figure formatting} |
|
|
|
\begin{minipage}{0.90\textheight}% |
|
|
|
%% Identity continuation |
|
|
|
%% \[ |
|
|
|
%% \shk_0 = [(\nil, (\emptyset, \{\Return\;x \mapsto x\}))] |
|
|
|
%% \] |
|
|
|
%\textbf{Initialisation} $~~\stepsto \subseteq \CompCat \times \MConfCat$ |
|
|
|
% |
|
|
|
\begin{figure} |
|
|
|
\[ |
|
|
|
\ba{@{}l@{~}r@{~}c@{~}l@{\quad}l@{}} |
|
|
|
\mlab{Init} & M &\stepsto& \cek{M \mid \emptyset \mid [(\nil, (\emptyset, \{\Return\;x \mapsto \Return\;x\}))]} \\ |
|
|
|
% |
|
|
|
%\textbf{Finalisation} $~~\stepsto \subseteq \MConfCat \times \CompCat$ |
|
|
|
% |
|
|
|
\mlab{Halt} & \cek{\Return\;V \mid \env \mid \nil} &\stepsto& \val{V}{\env}\\ |
|
|
|
\bl |
|
|
|
\multicolumn{1}{c}{\val{-} : \ValCat \times \MEnvCat \to \MValCat}\\[1ex] |
|
|
|
\ba[t]{@{}r@{~}c@{~}l@{}} |
|
|
|
\val{x}{\env} &\defas& \env(x) \\ |
|
|
|
\val{\lambda x^A.M}{\env} &\defas& (\env, \lambda x^A.M) \\ |
|
|
|
\val{\Rec\,g^{A \to C}\,x.M}{\env} &\defas& (\env, \Rec\,g^{A \to C}\,x.M) \\ |
|
|
|
\val{\Lambda \alpha^K.M}{\env} &\defas& (\env, \Lambda \alpha^K.M) \\ |
|
|
|
\ea |
|
|
|
\qquad |
|
|
|
\ba[t]{@{}r@{~}c@{~}l@{}} |
|
|
|
\val{\Record{}}{\env} &\defas& \Record{} \\ |
|
|
|
\val{\Record{\ell = V; W}}{\env} &\defas& \Record{\ell = \val{V}{\env}; \val{W}{\env}} \\ |
|
|
|
\val{(\ell\, V)^R}{\env} &\defas& (\ell\, \val{V}{\env})^R \\ |
|
|
|
\ea |
|
|
|
\el |
|
|
|
\] |
|
|
|
\caption{Value interpretation definition.} |
|
|
|
\label{fig:abstract-machine-val-interp} |
|
|
|
\end{figure} |
|
|
|
% |
|
|
|
%\textbf{Transition function} $~~\stepsto~ \subseteq \MConfCat \times \MConfCat$ |
|
|
|
\begin{figure}[p] |
|
|
|
\rotatebox{90}{ |
|
|
|
\begin{minipage}{0.99\textheight}% |
|
|
|
\[ |
|
|
|
\bl |
|
|
|
\multicolumn{1}{c}{\stepsto \subseteq \MConfCat \times \MConfCat}\\[1ex] |
|
|
|
\ba{@{}l@{\quad}r@{~}c@{~}l@{\quad}l@{}} |
|
|
|
% \mlab{Init} & \multicolumn{3}{@{}c@{}}{M \stepsto \cek{M \mid \emptyset \mid [(\nil, (\emptyset, \{\Return\;x \mapsto \Return\;x\}))]}} \\[1ex] |
|
|
|
% App |
|
|
|
\mlab{AppClosure} & \cek{ V\;W \mid \env \mid \shk} |
|
|
|
\mlab{App} & \cek{ V\;W \mid \env \mid \shk} |
|
|
|
&\stepsto& \cek{ M \mid \env'[x \mapsto \val{W}{\env}] \mid \shk}, |
|
|
|
\text{if }\val{V}{\env} = (\env', \lambda x^A.M) \\ |
|
|
|
&\text{if }\val{V}{\env} = (\env', \lambda x^A.M) \\ |
|
|
|
|
|
|
|
\mlab{AppRec} & \cek{ V\;W \mid \env \mid \shk} |
|
|
|
&\stepsto& \cek{ M \mid \env'[g \mapsto (\env', \Rec\,g^{A \to C}\,x.M), x \mapsto \val{W}{\env}] \mid \shk}, |
|
|
|
\text{if }\val{V}{\env} = (\env', \Rec\,g^{A \to C}\,x.M) \\ |
|
|
|
&\text{if }\val{V}{\env} = (\env', \Rec\,g^{A \to C}\,x.M) \\ |
|
|
|
|
|
|
|
% App - continuation |
|
|
|
% Deep resumption application |
|
|
|
\mlab{Resume} & \cek{ V\;W \mid \env \mid \shk} |
|
|
|
&\stepsto& \cek{ \Return \; W \mid \env \mid \shk' \concat \shk}, |
|
|
|
\text{if }\val{V}{\env} = (\shk')^A \\ |
|
|
|
&\text{if }\val{V}{\env} = (\shk')^A \\ |
|
|
|
|
|
|
|
% Shallow resumption application |
|
|
|
\mlab{Resume^\dagger} & \cek{ V\,W \mid \env \mid (\slk, \chi) \cons \shk} |
|
|
|
&\stepsto& |
|
|
|
\cek{\Return\; W \mid \env \mid \shk' \concat ((\slk' \concat \slk, \chi) \cons \shk)}, |
|
|
|
\text{if } \val{V}{\env} = (\shk', \slk')^A \\ |
|
|
|
&\text{if } \val{V}{\env} = (\shk', \slk')^A \\ |
|
|
|
|
|
|
|
% TyApp |
|
|
|
\mlab{AppType} & \cek{ V\,T \mid \env \mid \shk} |
|
|
|
&\stepsto& \cek{ M[T/\alpha] \mid \env' \mid \shk}, |
|
|
|
\text{if }\val{V}{\env} = (\env', \Lambda \alpha^K . \, M) \\[1ex] |
|
|
|
|
|
|
|
&\text{if }\val{V}{\env} = (\env', \Lambda \alpha^K . \, M) \\[2ex] |
|
|
|
% |
|
|
|
\mlab{Split} & \cek{ \Let \; \Record{\ell = x;y} = V \; \In \; N \mid \env \mid \shk} |
|
|
|
&\stepsto& \cek{ N \mid \env[x \mapsto v, y \mapsto w] \mid \shk}, |
|
|
|
\text {if }\val{V}{\env} = \Record{\ell=v; w} \\ |
|
|
|
&\text{if }\val{V}{\env} = \Record{\ell=v; w} \\ |
|
|
|
|
|
|
|
% Case |
|
|
|
\mlab{Case} & \cek{ \Case\; V\, \{ \ell~x \mapsto M; y \mapsto N\} \mid \env \mid \shk} |
|
|
|
&\stepsto& \begin{cases} |
|
|
|
\cek{ M \mid \env[x \mapsto v] \mid \shk}, & \text{if }\val{V}{\env} = \ell\, v \\ |
|
|
|
\cek{ N \mid \env[y \mapsto \ell'\, v] \mid \shk}, |
|
|
|
\text{if }\val{V}{\env} = \ell'\, v \text{ and } \ell \neq \ell' \\ |
|
|
|
\end{cases}\\ |
|
|
|
\cek{ M \mid \env[x \mapsto v] \mid \shk}, & |
|
|
|
\text{ if }\val{V}{\env} = \ell\, v\\ |
|
|
|
\cek{ N \mid \env[y \mapsto \ell'\, v] \mid \shk}, & |
|
|
|
\text{ if }\val{V}{\env} = \ell'\, v \text{ and } \ell \neq \ell' |
|
|
|
\end{cases}\\[2ex] |
|
|
|
|
|
|
|
% Let - eval M |
|
|
|
\mlab{Let} & \cek{ \Let \; x \revto M \; \In \; N \mid \env \mid (\slk, \chi) \cons \shk} |
|
|
|
@ -10922,56 +10936,58 @@ Figure~\ref{fig:abstract-machine-syntax}. |
|
|
|
&\stepsto& \cek{ M \mid \env \mid (\nil, (\env, H)^\depth) \cons \shk} \\[1ex] |
|
|
|
|
|
|
|
% Return - let binding |
|
|
|
\mlab{AppPureCont} &\cek{ \Return \; V \mid \env \mid ((\env',x,N) \cons \slk, \chi) \cons \shk} |
|
|
|
\mlab{PureCont} &\cek{ \Return \; V \mid \env \mid ((\env',x,N) \cons \slk, \chi) \cons \shk} |
|
|
|
&\stepsto& \cek{ N \mid \env'[x \mapsto \val{V}{\env}] \mid (\slk, \chi) \cons \shk} \\ |
|
|
|
|
|
|
|
% Return - handler |
|
|
|
\mlab{AppGenCont} & \cek{ \Return \; V \mid \env \mid (\nil, (\env',H)) \cons \shk} |
|
|
|
\mlab{GenCont} & \cek{ \Return \; V \mid \env \mid (\nil, (\env',H)) \cons \shk} |
|
|
|
&\stepsto& \cek{ M \mid \env'[x \mapsto \val{V}{\env}] \mid \shk}, |
|
|
|
\text{if } \hret = \{\Return\; x \mapsto M\} \\ |
|
|
|
&\text{if } \hret = \{\Return\; x \mapsto M\} \\[2ex] |
|
|
|
% \mlab{Halt} & \cek{\Return\;V \mid \env \mid \nil} &\stepsto& \val{V}{\env} \\[1ex] |
|
|
|
|
|
|
|
% Deep |
|
|
|
\mlab{Do} & \cek{ (\Do \; \ell \; V)^E \mid \env \mid ((\slk, (\env', H)) \cons \shk) \circ \shk'} |
|
|
|
&\stepsto& \cek{M \mid \env'[x \mapsto \val{V}{\env}, |
|
|
|
&\stepsto& \cek{M \mid \env'[p \mapsto \val{V}{\env}, |
|
|
|
r \mapsto (\shk' \concat [(\slk, (\env', H))])^B] \mid \shk},\\ |
|
|
|
&& \multicolumn{2}{@{}r@{}}{\text{if } \ell : A \to B \in E \text{ and } \hell = \{\ell\; x \; r \mapsto M\}} \\ |
|
|
|
&&&\quad\text{if } \ell : A \to B \in E \text{ and } \hell = \{\OpCase{\ell}{p}{r} \mapsto M\} \\ |
|
|
|
|
|
|
|
% Shallow |
|
|
|
\mlab{Do^\dagger} & \cek{ (\Do \; \ell \; V)^E \mid \env \mid ((\slk, (\gamma', H)^\dagger) \cons \shk) \circ \shk'} &\stepsto& |
|
|
|
\cek{M \mid \env'[x \mapsto \val{V}{\env}, r \mapsto (\shk', \slk)^B] \mid \shk},\\ |
|
|
|
&&\multicolumn{2}{@{}r@{}}{\text{if } \ell : A \to B \in E \text{ and } \hell = \{\ell\; x \; r \mapsto M\}} \\ |
|
|
|
\mlab{Do^\dagger} & \cek{ (\Do \; \ell \; V)^E \mid \env \mid ((\slk, (\gamma', H)^\dagger) \cons \shk) \circ \shk'} &\stepsto& \cek{M \mid \env'[p \mapsto \val{V}{\env}, |
|
|
|
r \mapsto (\shk', \slk)^B] \mid \shk},\\ |
|
|
|
&&&\quad\text{if } \ell : A \to B \in E \text{ and } \hell = \{\OpCase{\ell}{p}{r} \mapsto M\} \\ |
|
|
|
|
|
|
|
% Forward |
|
|
|
\mlab{Forward} & \cek{ (\Do \; \ell \; V)^E \mid \env \mid ((\slk, (\env', H)^\depth) \cons \shk) \circ \shk'} |
|
|
|
&\stepsto& \cek{ (\Do \; \ell \; V)^E \mid \env \mid \shk \circ (\shk' \concat [(\slk, (\env', H)^\depth)])}, \text{if } \hell = \emptyset \\ |
|
|
|
&\stepsto& \cek{ (\Do \; \ell \; V)^E \mid \env \mid \shk \circ (\shk' \concat [(\slk, (\env', H)^\depth)])}, |
|
|
|
&\text{if } \hell = \emptyset |
|
|
|
\ea |
|
|
|
\el |
|
|
|
\] |
|
|
|
|
|
|
|
\textbf{Value interpretation} $~\val{-} : \ValCat \times \MEnvCat \to \MValCat$ |
|
|
|
\begin{displaymath} |
|
|
|
\ba{@{}r@{~}c@{~}l@{}} |
|
|
|
\val{x}{\env} &=& \env(x) \\ |
|
|
|
\val{\Record{}}{\env} &=& \Record{} \\ |
|
|
|
\ea |
|
|
|
\qquad |
|
|
|
\ba{@{}r@{~}c@{~}l@{}} |
|
|
|
\val{\lambda x^A.M}{\env} &=& (\env, \lambda x^A.M) \\ |
|
|
|
\val{\Record{\ell = V; W}}{\env} &=& \Record{\ell = \val{V}{\env}; \val{W}{\env}} \\ |
|
|
|
\ea |
|
|
|
\qquad |
|
|
|
\ba{@{}r@{~}c@{~}l@{}} |
|
|
|
\val{\Lambda \alpha^K.M}{\env} &=& (\env, \Lambda \alpha^K.M) \\ |
|
|
|
\val{(\ell\, V)^R}{\env} &=& (\ell\; \val{V}{\env})^R \\ |
|
|
|
\ea |
|
|
|
\qquad |
|
|
|
\val{\Rec\,g^{A \to C}\,x.M}{\env} = (\env, \Rec\,g^{A \to C}\,x.M) \\ |
|
|
|
\end{displaymath} |
|
|
|
|
|
|
|
\caption{Abstract machine semantics.} |
|
|
|
\caption{Abstract machine transitions.} |
|
|
|
\label{fig:abstract-machine-semantics} |
|
|
|
\end{minipage} |
|
|
|
} |
|
|
|
\end{figure} |
|
|
|
% |
|
|
|
\begin{figure} |
|
|
|
\[ |
|
|
|
\bl |
|
|
|
\ba{@{~}l@{\quad}l@{~}l} |
|
|
|
\multicolumn{2}{l}{\textbf{Identity continuation}}\\ |
|
|
|
\multicolumn{3}{l}{\quad\shk_0 \defas [(\nil, (\emptyset, \{\Return\;x \mapsto x\}))]} |
|
|
|
\medskip\\ |
|
|
|
% |
|
|
|
\textbf{Initialisation} & \stepsto \subseteq \CompCat \times \MConfCat\\ |
|
|
|
\quad\mlab{Init} & \multicolumn{2}{l}{\quad M \stepsto \cek{M \mid \emptyset \mid \shk_0}} |
|
|
|
\medskip\\ |
|
|
|
% |
|
|
|
\textbf{Finalisation} & \stepsto \subseteq \MConfCat \times \ValCat\\ |
|
|
|
\quad\mlab{Halt} & \multicolumn{2}{l}{\quad\cek{\Return\;V \mid \env \mid \nil} \stepsto \val{V}\env} |
|
|
|
\ea |
|
|
|
\el |
|
|
|
\] |
|
|
|
\caption{Machine initialisation and finalisation.} |
|
|
|
\end{figure} |
|
|
|
% |
|
|
|
A configuration $\conf = \cek{M \mid \env \mid \shk \circ \shk'}$ |
|
|
|
of our abstract machine is a quadruple of a computation term ($M$), an |
|
|
|
|