Browse Source

Abstract machine figures

master
Daniel Hillerström 5 years ago
parent
commit
4c480a4b6e
  1. 142
      thesis.tex

142
thesis.tex

@ -10859,59 +10859,73 @@ Figure~\ref{fig:abstract-machine-syntax}.
% notion of continuation to accommodate handlers.
%
%
\begin{figure}[p]
\dhil{Fix figure formatting}
\begin{minipage}{0.90\textheight}%
%% Identity continuation
%% \[
%% \shk_0 = [(\nil, (\emptyset, \{\Return\;x \mapsto x\}))]
%% \]
%\textbf{Initialisation} $~~\stepsto \subseteq \CompCat \times \MConfCat$
%
\begin{figure}
\[
\ba{@{}l@{~}r@{~}c@{~}l@{\quad}l@{}}
\mlab{Init} & M &\stepsto& \cek{M \mid \emptyset \mid [(\nil, (\emptyset, \{\Return\;x \mapsto \Return\;x\}))]} \\
%
%\textbf{Finalisation} $~~\stepsto \subseteq \MConfCat \times \CompCat$
%
\mlab{Halt} & \cek{\Return\;V \mid \env \mid \nil} &\stepsto& \val{V}{\env}\\
\bl
\multicolumn{1}{c}{\val{-} : \ValCat \times \MEnvCat \to \MValCat}\\[1ex]
\ba[t]{@{}r@{~}c@{~}l@{}}
\val{x}{\env} &\defas& \env(x) \\
\val{\lambda x^A.M}{\env} &\defas& (\env, \lambda x^A.M) \\
\val{\Rec\,g^{A \to C}\,x.M}{\env} &\defas& (\env, \Rec\,g^{A \to C}\,x.M) \\
\val{\Lambda \alpha^K.M}{\env} &\defas& (\env, \Lambda \alpha^K.M) \\
\ea
\qquad
\ba[t]{@{}r@{~}c@{~}l@{}}
\val{\Record{}}{\env} &\defas& \Record{} \\
\val{\Record{\ell = V; W}}{\env} &\defas& \Record{\ell = \val{V}{\env}; \val{W}{\env}} \\
\val{(\ell\, V)^R}{\env} &\defas& (\ell\, \val{V}{\env})^R \\
\ea
\el
\]
\caption{Value interpretation definition.}
\label{fig:abstract-machine-val-interp}
\end{figure}
%
%\textbf{Transition function} $~~\stepsto~ \subseteq \MConfCat \times \MConfCat$
\begin{figure}[p]
\rotatebox{90}{
\begin{minipage}{0.99\textheight}%
\[
\bl
\multicolumn{1}{c}{\stepsto \subseteq \MConfCat \times \MConfCat}\\[1ex]
\ba{@{}l@{\quad}r@{~}c@{~}l@{\quad}l@{}}
% \mlab{Init} & \multicolumn{3}{@{}c@{}}{M \stepsto \cek{M \mid \emptyset \mid [(\nil, (\emptyset, \{\Return\;x \mapsto \Return\;x\}))]}} \\[1ex]
% App
\mlab{AppClosure} & \cek{ V\;W \mid \env \mid \shk}
\mlab{App} & \cek{ V\;W \mid \env \mid \shk}
&\stepsto& \cek{ M \mid \env'[x \mapsto \val{W}{\env}] \mid \shk},
\text{if }\val{V}{\env} = (\env', \lambda x^A.M) \\
&\text{if }\val{V}{\env} = (\env', \lambda x^A.M) \\
\mlab{AppRec} & \cek{ V\;W \mid \env \mid \shk}
&\stepsto& \cek{ M \mid \env'[g \mapsto (\env', \Rec\,g^{A \to C}\,x.M), x \mapsto \val{W}{\env}] \mid \shk},
\text{if }\val{V}{\env} = (\env', \Rec\,g^{A \to C}\,x.M) \\
&\text{if }\val{V}{\env} = (\env', \Rec\,g^{A \to C}\,x.M) \\
% App - continuation
% Deep resumption application
\mlab{Resume} & \cek{ V\;W \mid \env \mid \shk}
&\stepsto& \cek{ \Return \; W \mid \env \mid \shk' \concat \shk},
\text{if }\val{V}{\env} = (\shk')^A \\
&\stepsto& \cek{ \Return \; W \mid \env \mid \shk' \concat \shk},
&\text{if }\val{V}{\env} = (\shk')^A \\
% Shallow resumption application
\mlab{Resume^\dagger} & \cek{ V\,W \mid \env \mid (\slk, \chi) \cons \shk}
&\stepsto&
\cek{\Return\; W \mid \env \mid \shk' \concat ((\slk' \concat \slk, \chi) \cons \shk)},
\text{if } \val{V}{\env} = (\shk', \slk')^A \\
&\text{if } \val{V}{\env} = (\shk', \slk')^A \\
% TyApp
\mlab{AppType} & \cek{ V\,T \mid \env \mid \shk}
&\stepsto& \cek{ M[T/\alpha] \mid \env' \mid \shk},
\text{if }\val{V}{\env} = (\env', \Lambda \alpha^K . \, M) \\[1ex]
&\text{if }\val{V}{\env} = (\env', \Lambda \alpha^K . \, M) \\[2ex]
%
\mlab{Split} & \cek{ \Let \; \Record{\ell = x;y} = V \; \In \; N \mid \env \mid \shk}
&\stepsto& \cek{ N \mid \env[x \mapsto v, y \mapsto w] \mid \shk},
\text {if }\val{V}{\env} = \Record{\ell=v; w} \\
&\text{if }\val{V}{\env} = \Record{\ell=v; w} \\
% Case
\mlab{Case} & \cek{ \Case\; V\, \{ \ell~x \mapsto M; y \mapsto N\} \mid \env \mid \shk}
&\stepsto& \begin{cases}
\cek{ M \mid \env[x \mapsto v] \mid \shk}, & \text{if }\val{V}{\env} = \ell\, v \\
\cek{ N \mid \env[y \mapsto \ell'\, v] \mid \shk},
\text{if }\val{V}{\env} = \ell'\, v \text{ and } \ell \neq \ell' \\
\end{cases}\\
&\stepsto& \begin{cases}
\cek{ M \mid \env[x \mapsto v] \mid \shk}, &
\text{ if }\val{V}{\env} = \ell\, v\\
\cek{ N \mid \env[y \mapsto \ell'\, v] \mid \shk}, &
\text{ if }\val{V}{\env} = \ell'\, v \text{ and } \ell \neq \ell'
\end{cases}\\[2ex]
% Let - eval M
\mlab{Let} & \cek{ \Let \; x \revto M \; \In \; N \mid \env \mid (\slk, \chi) \cons \shk}
@ -10922,56 +10936,58 @@ Figure~\ref{fig:abstract-machine-syntax}.
&\stepsto& \cek{ M \mid \env \mid (\nil, (\env, H)^\depth) \cons \shk} \\[1ex]
% Return - let binding
\mlab{AppPureCont} &\cek{ \Return \; V \mid \env \mid ((\env',x,N) \cons \slk, \chi) \cons \shk}
\mlab{PureCont} &\cek{ \Return \; V \mid \env \mid ((\env',x,N) \cons \slk, \chi) \cons \shk}
&\stepsto& \cek{ N \mid \env'[x \mapsto \val{V}{\env}] \mid (\slk, \chi) \cons \shk} \\
% Return - handler
\mlab{AppGenCont} & \cek{ \Return \; V \mid \env \mid (\nil, (\env',H)) \cons \shk}
\mlab{GenCont} & \cek{ \Return \; V \mid \env \mid (\nil, (\env',H)) \cons \shk}
&\stepsto& \cek{ M \mid \env'[x \mapsto \val{V}{\env}] \mid \shk},
\text{if } \hret = \{\Return\; x \mapsto M\} \\
&\text{if } \hret = \{\Return\; x \mapsto M\} \\[2ex]
% \mlab{Halt} & \cek{\Return\;V \mid \env \mid \nil} &\stepsto& \val{V}{\env} \\[1ex]
% Deep
\mlab{Do} & \cek{ (\Do \; \ell \; V)^E \mid \env \mid ((\slk, (\env', H)) \cons \shk) \circ \shk'}
&\stepsto& \cek{M \mid \env'[x \mapsto \val{V}{\env},
r \mapsto (\shk' \concat [(\slk, (\env', H))])^B] \mid \shk}, \\
&& \multicolumn{2}{@{}r@{}}{\text{if } \ell : A \to B \in E \text{ and } \hell = \{\ell\; x \; r \mapsto M\}} \\
&\stepsto& \cek{M \mid \env'[p \mapsto \val{V}{\env},
r \mapsto (\shk' \concat [(\slk, (\env', H))])^B] \mid \shk},\\
&&&\quad\text{if } \ell : A \to B \in E \text{ and } \hell = \{\OpCase{\ell}{p}{r} \mapsto M\} \\
% Shallow
\mlab{Do^\dagger} & \cek{ (\Do \; \ell \; V)^E \mid \env \mid ((\slk, (\gamma', H)^\dagger) \cons \shk) \circ \shk'} &\stepsto&
\cek{M \mid \env'[x \mapsto \val{V}{\env}, r \mapsto (\shk', \slk)^B] \mid \shk},\\
&&\multicolumn{2}{@{}r@{}}{\text{if } \ell : A \to B \in E \text{ and } \hell = \{\ell\; x \; r \mapsto M\}} \\
\mlab{Do^\dagger} & \cek{ (\Do \; \ell \; V)^E \mid \env \mid ((\slk, (\gamma', H)^\dagger) \cons \shk) \circ \shk'} &\stepsto& \cek{M \mid \env'[p \mapsto \val{V}{\env},
r \mapsto (\shk', \slk)^B] \mid \shk},\\
&&&\quad\text{if } \ell : A \to B \in E \text{ and } \hell = \{\OpCase{\ell}{p}{r} \mapsto M\} \\
% Forward
\mlab{Forward} & \cek{ (\Do \; \ell \; V)^E \mid \env \mid ((\slk, (\env', H)^\depth) \cons \shk) \circ \shk'}
&\stepsto& \cek{ (\Do \; \ell \; V)^E \mid \env \mid \shk \circ (\shk' \concat [(\slk, (\env', H)^\depth)])}, \text{if } \hell = \emptyset \\
&\stepsto& \cek{ (\Do \; \ell \; V)^E \mid \env \mid \shk \circ (\shk' \concat [(\slk, (\env', H)^\depth)])},
&\text{if } \hell = \emptyset
\ea
\el
\]
\textbf{Value interpretation} $~\val{-} : \ValCat \times \MEnvCat \to \MValCat$
\begin{displaymath}
\ba{@{}r@{~}c@{~}l@{}}
\val{x}{\env} &=& \env(x) \\
\val{\Record{}}{\env} &=& \Record{} \\
\ea
\qquad
\ba{@{}r@{~}c@{~}l@{}}
\val{\lambda x^A.M}{\env} &=& (\env, \lambda x^A.M) \\
\val{\Record{\ell = V; W}}{\env} &=& \Record{\ell = \val{V}{\env}; \val{W}{\env}} \\
\ea
\qquad
\ba{@{}r@{~}c@{~}l@{}}
\val{\Lambda \alpha^K.M}{\env} &=& (\env, \Lambda \alpha^K.M) \\
\val{(\ell\, V)^R}{\env} &=& (\ell\; \val{V}{\env})^R \\
\ea
\qquad
\val{\Rec\,g^{A \to C}\,x.M}{\env} = (\env, \Rec\,g^{A \to C}\,x.M) \\
\end{displaymath}
\caption{Abstract machine semantics.}
\caption{Abstract machine transitions.}
\label{fig:abstract-machine-semantics}
\end{minipage}
}
\end{figure}
%
\begin{figure}
\[
\bl
\ba{@{~}l@{\quad}l@{~}l}
\multicolumn{2}{l}{\textbf{Identity continuation}}\\
\multicolumn{3}{l}{\quad\shk_0 \defas [(\nil, (\emptyset, \{\Return\;x \mapsto x\}))]}
\medskip\\
%
\textbf{Initialisation} & \stepsto \subseteq \CompCat \times \MConfCat\\
\quad\mlab{Init} & \multicolumn{2}{l}{\quad M \stepsto \cek{M \mid \emptyset \mid \shk_0}}
\medskip\\
%
\textbf{Finalisation} & \stepsto \subseteq \MConfCat \times \ValCat\\
\quad\mlab{Halt} & \multicolumn{2}{l}{\quad\cek{\Return\;V \mid \env \mid \nil} \stepsto \val{V}\env}
\ea
\el
\]
\caption{Machine initialisation and finalisation.}
\end{figure}
%
A configuration $\conf = \cek{M \mid \env \mid \shk \circ \shk'}$
of our abstract machine is a quadruple of a computation term ($M$), an

Loading…
Cancel
Save