From 817676f8e841c1c3e665366be5aa0b00dded9309 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Daniel=20Hillerstr=C3=B6m?= Date: Sat, 10 Apr 2021 18:47:49 +0100 Subject: [PATCH] Edits --- thesis.tex | 12 ++++++------ 1 file changed, 6 insertions(+), 6 deletions(-) diff --git a/thesis.tex b/thesis.tex index 34fd9e6..cbc181b 100644 --- a/thesis.tex +++ b/thesis.tex @@ -11887,7 +11887,7 @@ For all shallow handlers $H$, the following context is administrative &\Let\; z \revto \Handle\; \EC'[\Do\;\ell\;V]\;\With\;\sdtrans{H}\;\In\; \Let\;\Record{f;\_} = z\;\In\;f\,\Unit\\ - \reducesto& \reason{\semlab{Op} using assumption $\ell \notin \EC'$}\\ + \reducesto& \reason{\semlab{Op} using assumption $\ell \notin \BL(\EC')$}\\ &\bl \Let\; z \revto \bl \Let\;r\revto @@ -11963,7 +11963,7 @@ $N'$ such that $N' \approxa \sdtrans{N}$ and $M' \reducesto^+ N'$. \lambda\Unit.\Let\;x \revto \Do\;\ell~\sdtrans{V}\;\In\;r~x;\\ \lambda\Unit.\sdtrans{N_\ell}}[\lambda x. \bl - \Let\;z \revto (\lambda y.\Handle\;\sdtrans{E}[\Return\;y]\;\With\;\sdtrans{H})~x\;\In\\ + \Let\;z \revto (\lambda y.\Handle\;\sdtrans{\EC}[\Return\;y]\;\With\;\sdtrans{H})~x\;\In\\ \Let\;\Record{f;g} = z\;\In\;f\,\Unit/r,\sdtrans{V}/p]\;\In\; g\,\Unit \el \el\\ @@ -11971,13 +11971,13 @@ $N'$ such that $N' \approxa \sdtrans{N}$ and $M' \reducesto^+ N'$. \reducesto^+ &\reason{\semlab{Split}, \semlab{App}}\\ &\sdtrans{N_\ell}[\lambda x. \bl - \Let\;z \revto (\lambda y.\Handle\;\sdtrans{E}[\Return\;y]\;\With\;\sdtrans{H})~x\;\In\\ + \Let\;z \revto (\lambda y.\Handle\;\sdtrans{\EC}[\Return\;y]\;\With\;\sdtrans{H})~x\;\In\\ \Let\;\Record{f;g} = z\;\In\;f\,\Unit/r,\sdtrans{V}/p] \el\\ =& \reason{by Lemma~\ref{lem:sdtrans-subst}}\\ &\sdtrans{N_\ell[\lambda x. \bl - \Let\;z \revto (\lambda y.\Handle\;E[\Return\;y]\;\With\;H)~x\;\In\\ + \Let\;z \revto (\lambda y.\Handle\;\EC[\Return\;y]\;\With\;H)~x\;\In\\ \Let\;\Record{f;g} = z\;\In\;f\,\Unit/r,V/p]} \el \end{derivation} @@ -11996,7 +11996,7 @@ $N'$ such that $N' \approxa \sdtrans{N}$ and $M' \reducesto^+ N'$. % \[ (\bl - \lambda x.\Let\;z \revto (\lambda y.\Handle\;\sdtrans{E}[\Return\;y]\;\With\;\sdtrans{H})~x\;\In\\ + \lambda x.\Let\;z \revto (\lambda y.\Handle\;\sdtrans{\EC}[\Return\;y]\;\With\;\sdtrans{H})~x\;\In\\ \Let\;\Record{f;g} = z \;\In\;f\,\Unit)~W \approxa (\lambda y.\sdtrans{\EC}[\Return\;y])~W. \el \] @@ -12005,7 +12005,7 @@ $N'$ such that $N' \approxa \sdtrans{N}$ and $M' \reducesto^+ N'$. applications of \semlab{App} on the left hand side yield the term % \[ - \Let\;z \revto \Handle\;\sdtrans{E}[\Return\;W]\;\With\;\sdtrans{H}\;\In\;\Let\;\Record{f;g} = z \;\In\;f\,\Unit. + \Let\;z \revto \Handle\;\sdtrans{\EC}[\Return\;W]\;\With\;\sdtrans{H}\;\In\;\Let\;\Record{f;g} = z \;\In\;f\,\Unit. \] % Define