|
|
@ -2193,8 +2193,10 @@ have been $\eta$-reduced. The translation of operations and handlers |
|
|
is as follows. |
|
|
is as follows. |
|
|
% |
|
|
% |
|
|
\begin{equations} |
|
|
\begin{equations} |
|
|
|
|
|
\cps{-} &:& \CompCat \to \UCompCat\\ |
|
|
\cps{\Do\;\ell\;V} &\defas& \lambda k.\lambda h.h~\Record{\ell,\Record{\cps{V}, \lambda x.k~x~h}} \\ |
|
|
\cps{\Do\;\ell\;V} &\defas& \lambda k.\lambda h.h~\Record{\ell,\Record{\cps{V}, \lambda x.k~x~h}} \\ |
|
|
\cps{\Handle \; M \; \With \; H} &\defas& \cps{M}~\cps{\hret}~\cps{\hops} \smallskip\\ |
|
|
|
|
|
|
|
|
\cps{\Handle \; M \; \With \; H} &\defas& \cps{M}~\cps{\hret}~\cps{\hops} \medskip\\ |
|
|
|
|
|
\cps{-} &:& \HandlerCat \to \UCompCat\\ |
|
|
\cps{\{ \Return \; x \mapsto N \}} &\defas& \lambda x . \lambda h . \cps{N} \\ |
|
|
\cps{\{ \Return \; x \mapsto N \}} &\defas& \lambda x . \lambda h . \cps{N} \\ |
|
|
\cps{\{ \ell~p~r \mapsto N_\ell \}_{\ell \in \mathcal{L}}} |
|
|
\cps{\{ \ell~p~r \mapsto N_\ell \}_{\ell \in \mathcal{L}}} |
|
|
&\defas& |
|
|
&\defas& |
|
|
@ -2230,7 +2232,8 @@ identity pure continuation (which discards its handler argument), and |
|
|
an effect continuation that is never intended to be called. |
|
|
an effect continuation that is never intended to be called. |
|
|
% |
|
|
% |
|
|
\begin{equations} |
|
|
\begin{equations} |
|
|
\pcps{M} &=& \cps{M}~(\lambda x.\lambda h.x)~(\lambda \Record{z,\_}.\Absurd~z) \\ |
|
|
|
|
|
|
|
|
\pcps{-} &:& \CompCat \to \UCompCat\\ |
|
|
|
|
|
\pcps{M} &\defas& \cps{M}~(\lambda x.\lambda h.x)~(\lambda \Record{z,\_}.\Absurd~z) \\ |
|
|
\end{equations} |
|
|
\end{equations} |
|
|
% |
|
|
% |
|
|
Conceptually, this translation encloses the translated program in a |
|
|
Conceptually, this translation encloses the translated program in a |
|
|
@ -2391,12 +2394,14 @@ translation is adjusted as follows to account for the new |
|
|
representation of continuations. |
|
|
representation of continuations. |
|
|
% |
|
|
% |
|
|
\begin{equations} |
|
|
\begin{equations} |
|
|
|
|
|
\cps{-} &:& \CompCat \to \UCompCat\\ |
|
|
\cps{\Return~V} &\defas& \lambda (k \cons ks).k\,\cps{V}\,ks \\ |
|
|
\cps{\Return~V} &\defas& \lambda (k \cons ks).k\,\cps{V}\,ks \\ |
|
|
\cps{\Let~x \revto M~\In~N} &\defas& \lambda (k \cons ks).\cps{M}((\lambda x.\lambda ks'.\cps{N}(k \cons ks')) \cons ks) |
|
|
\cps{\Let~x \revto M~\In~N} &\defas& \lambda (k \cons ks).\cps{M}((\lambda x.\lambda ks'.\cps{N}(k \cons ks')) \cons ks) |
|
|
\smallskip \\ |
|
|
\smallskip \\ |
|
|
\cps{\Do\;\ell\;V} &\defas& \lambda (k \cons h \cons ks).h\,\Record{\ell,\Record{\cps{V}, \lambda x.\lambda ks'.k\,x\,(h \cons ks')}}\,ks |
|
|
\cps{\Do\;\ell\;V} &\defas& \lambda (k \cons h \cons ks).h\,\Record{\ell,\Record{\cps{V}, \lambda x.\lambda ks'.k\,x\,(h \cons ks')}}\,ks |
|
|
\smallskip \\ |
|
|
\smallskip \\ |
|
|
\cps{\Handle \; M \; \With \; H} &\defas& \lambda ks . \cps{M} (\cps{\hret} \cons \cps{\hops} \cons ks) \smallskip\\ |
|
|
|
|
|
|
|
|
\cps{\Handle \; M \; \With \; H} &\defas& \lambda ks . \cps{M} (\cps{\hret} \cons \cps{\hops} \cons ks) \medskip\\ |
|
|
|
|
|
\cps{-} &:& \HandlerCat \to \UCompCat\\ |
|
|
\cps{\{\Return \; x \mapsto N\}} &\defas& \lambda x.\lambda ks.\Let\; (h \cons ks') = ks \;\In\; \cps{N}\,ks' |
|
|
\cps{\{\Return \; x \mapsto N\}} &\defas& \lambda x.\lambda ks.\Let\; (h \cons ks') = ks \;\In\; \cps{N}\,ks' |
|
|
\\ |
|
|
\\ |
|
|
\cps{\{\ell \; p \; r \mapsto N_\ell\}_{\ell \in \mathcal{L}}} |
|
|
\cps{\{\ell \; p \; r \mapsto N_\ell\}_{\ell \in \mathcal{L}}} |
|
|
@ -2409,7 +2414,8 @@ representation of continuations. |
|
|
\hforward((y,p,r),ks) &\defas& \bl |
|
|
\hforward((y,p,r),ks) &\defas& \bl |
|
|
\Let\; (k' \cons h' \cons ks') = ks \;\In\; \\ |
|
|
\Let\; (k' \cons h' \cons ks') = ks \;\In\; \\ |
|
|
h'\,\Record{y, \Record{p, \lambda x.\lambda ks''.\,r\,x\,(k' \cons h' \cons ks'')}}\,ks'\\ |
|
|
h'\,\Record{y, \Record{p, \lambda x.\lambda ks''.\,r\,x\,(k' \cons h' \cons ks'')}}\,ks'\\ |
|
|
\el \smallskip\\ |
|
|
|
|
|
|
|
|
\el \medskip\\ |
|
|
|
|
|
\pcps{-} &:& \CompCat \to \UCompCat\\ |
|
|
\pcps{M} &\defas& \cps{M}~((\lambda x.\lambda ks.x) \cons (\lambda \Record{z,\Record{p,r}}. \lambda ks.\,\Absurd~z) \cons \nil) |
|
|
\pcps{M} &\defas& \cps{M}~((\lambda x.\lambda ks.x) \cons (\lambda \Record{z,\Record{p,r}}. \lambda ks.\,\Absurd~z) \cons \nil) |
|
|
\end{equations} |
|
|
\end{equations} |
|
|
% |
|
|
% |
|
|
@ -2479,9 +2485,10 @@ Rather than representing resumptions as functions, we move to an |
|
|
explicit representation of resumptions as \emph{reversed} stacks of |
|
|
explicit representation of resumptions as \emph{reversed} stacks of |
|
|
pure and effect continuations. By choosing to reverse the order of |
|
|
pure and effect continuations. By choosing to reverse the order of |
|
|
pure and effect continuations, we can construct resumptions |
|
|
pure and effect continuations, we can construct resumptions |
|
|
efficiently using regular cons-lists. We convert these reversed stacks |
|
|
|
|
|
to actual functions on demand using a special |
|
|
|
|
|
$\Let\;r=\Res\,V\;\In\;N$ computation term that reduces as follows. |
|
|
|
|
|
|
|
|
efficiently using regular cons-lists. We augment the syntax and |
|
|
|
|
|
semantics of $\UCalc$ with a computation term |
|
|
|
|
|
$\Let\;r=\Res\,V\;\In\;N$ which allow us to convert these reversed |
|
|
|
|
|
stacks to actual functions on demand. |
|
|
% |
|
|
% |
|
|
\begin{reductions} |
|
|
\begin{reductions} |
|
|
\usemlab{Res} |
|
|
\usemlab{Res} |
|
|
@ -2502,9 +2509,12 @@ modified to account for the change in representation of |
|
|
resumptions. |
|
|
resumptions. |
|
|
% |
|
|
% |
|
|
\begin{equations} |
|
|
\begin{equations} |
|
|
|
|
|
\cps{-} &:& \CompCat \to \UCompCat\\ |
|
|
\cps{\Do\;\ell\;V} |
|
|
\cps{\Do\;\ell\;V} |
|
|
&\defas& \lambda k \cons h \cons ks.\,h\, \Record{\ell,\Record{\cps{V}, h \cons k \cons \nil}}\, ks |
|
|
&\defas& \lambda k \cons h \cons ks.\,h\, \Record{\ell,\Record{\cps{V}, h \cons k \cons \nil}}\, ks |
|
|
\\ |
|
|
|
|
|
|
|
|
\medskip\\ |
|
|
|
|
|
% |
|
|
|
|
|
\cps{-} &:& \HandlerCat \to \UCompCat\\ |
|
|
\cps{\{(\ell \; p \; r \mapsto N_\ell)_{\ell \in \mathcal{L}}\}} |
|
|
\cps{\{(\ell \; p \; r \mapsto N_\ell)_{\ell \in \mathcal{L}}\}} |
|
|
&\defas& \bl |
|
|
&\defas& \bl |
|
|
\lambda \Record{z,\Record{p,rs}}.\lambda ks.\Case \;z\; \{ |
|
|
\lambda \Record{z,\Record{p,rs}}.\lambda ks.\Case \;z\; \{ |
|
|
@ -2525,6 +2535,162 @@ resumption stack with the current continuation pair. |
|
|
% Since we have only changed the representation of resumptions, the |
|
|
% Since we have only changed the representation of resumptions, the |
|
|
% translation of top-level programs remains the same. |
|
|
% translation of top-level programs remains the same. |
|
|
|
|
|
|
|
|
|
|
|
\subsection{Higher-order translation for deep effect handlers} |
|
|
|
|
|
\label{sec:higher-order-uncurried-deep-handlers-cps} |
|
|
|
|
|
% |
|
|
|
|
|
\begin{figure} |
|
|
|
|
|
% |
|
|
|
|
|
\textbf{Static patterns and static lists} |
|
|
|
|
|
% |
|
|
|
|
|
\begin{syntax} |
|
|
|
|
|
\slab{Static patterns} &\sP& ::= & \sk \scons \sP \mid \sks \\ |
|
|
|
|
|
\slab{Static lists} &\VS& ::= & V \scons \VS \mid \reflect V \\ |
|
|
|
|
|
\end{syntax} |
|
|
|
|
|
% |
|
|
|
|
|
\textbf{Reification} |
|
|
|
|
|
% |
|
|
|
|
|
\begin{equations} |
|
|
|
|
|
\reify (V \scons \VS) &\defas& V \dcons \reify \VS \\ |
|
|
|
|
|
\reify \reflect V &\defas& V \\ |
|
|
|
|
|
\end{equations} |
|
|
|
|
|
% |
|
|
|
|
|
\textbf{Values} |
|
|
|
|
|
% |
|
|
|
|
|
\begin{displaymath} |
|
|
|
|
|
\begin{eqs} |
|
|
|
|
|
\cps{-} &:& \ValCat \to \UValCat\\ |
|
|
|
|
|
\cps{x} &\defas& x \\ |
|
|
|
|
|
\cps{\lambda x.M} &\defas& \dlam x\,ks.\cps{M} \sapp \reflect ks \\ |
|
|
|
|
|
\cps{\Lambda \alpha.M} &\defas& \dlam z\,ks.\cps{M} \sapp \reflect ks \\ |
|
|
|
|
|
\cps{\Record{}} &\defas& \Record{} \\ |
|
|
|
|
|
\cps{\Record{\ell = V; W}} &\defas& \Record{\ell = \cps{V}; \cps{W}} \\ |
|
|
|
|
|
\cps{\ell~V} &\defas& \ell~\cps{V} \\ |
|
|
|
|
|
\end{eqs} |
|
|
|
|
|
\end{displaymath} |
|
|
|
|
|
% |
|
|
|
|
|
\textbf{Computations} |
|
|
|
|
|
% |
|
|
|
|
|
\begin{equations} |
|
|
|
|
|
\cps{-} &:& (\CompCat \times (\UValCat \to \UCompCat)^\ast) \to \UCompCat\\ |
|
|
|
|
|
\cps{V\,W} &\defas& \slam \sks.\cps{V} \dapp \cps{W} \dapp \reify \sks \\ |
|
|
|
|
|
\cps{V\,T} &\defas& \slam \sks.\cps{V} \dapp \Record{} \dapp \reify \sks \\ |
|
|
|
|
|
\cps{\Let\; \Record{\ell=x;y} = V \; \In \; N} &\defas& \slam \sks.\Let\; \Record{\ell=x;y} = \cps{V} \; \In \; \cps{N} \sapp \sks \\ |
|
|
|
|
|
\cps{\Case~V~\{\ell~x \mapsto M; y \mapsto N\}} &\defas& |
|
|
|
|
|
\slam \sks.\Case~\cps{V}~\{\ell~x \mapsto \cps{M} \sapp \sks; y \mapsto \cps{N} \sapp \sks\} \\ |
|
|
|
|
|
\cps{\Absurd~V} &\defas& \slam \sks.\Absurd~\cps{V} \\ |
|
|
|
|
|
\cps{\Return~V} &\defas& \slam \sk \scons \sks.\sk \dapp \cps{V} \dapp \reify \sks \\ |
|
|
|
|
|
\cps{\Let~x \revto M~\In~N} &\defas& \slam \sk \scons \sks.\cps{M} \sapp ((\dlam x\,ks.\cps{N} \sapp (\sk \scons \reflect ks)) \scons \sks) \\ |
|
|
|
|
|
\cps{\Do\;\ell\;V} &\defas& \slam \sk \scons \sh \scons \sks.\sh \dapp |
|
|
|
|
|
(\ell~\Record{\cps{V}, \sh \dcons \sk \dcons \dnil}) \dapp \reify \sks \\ |
|
|
|
|
|
\cps{\Handle \; M \; \With \; H} &\defas& \slam \sks . \cps{M} \sapp (\cps{\hret} \scons \cps{\hops} \scons \sks),~\text{where} |
|
|
|
|
|
\smallskip \\ |
|
|
|
|
|
% |
|
|
|
|
|
\end{equations} |
|
|
|
|
|
% |
|
|
|
|
|
\textbf{Handler definitions} |
|
|
|
|
|
% |
|
|
|
|
|
\begin{equations} |
|
|
|
|
|
\cps{-} &:& \HandlerCat \to \UCompCat\\ |
|
|
|
|
|
\cps{\{\Return \; x \mapsto N\}} &\defas& \dlam x\, ks.\dLet\; (h \dcons ks') = ks \;\dIn\; \cps{N} \sapp \reflect ks' |
|
|
|
|
|
\\ |
|
|
|
|
|
\cps{\{(\ell \; p \; r \mapsto N_\ell)_{\ell \in \mathcal{L}}\}} |
|
|
|
|
|
&\defas& |
|
|
|
|
|
\bl |
|
|
|
|
|
\dlam z \, ks.\Case \;z\; \{ |
|
|
|
|
|
\bl |
|
|
|
|
|
(\ell~\Record{p, s} \mapsto \dLet\;r=\Fun\,s \;\dIn\; \cps{N_{\ell}} \sapp \reflect ks)_{\ell \in \mathcal{L}};\, |
|
|
|
|
|
y \mapsto \hforward \} \\ |
|
|
|
|
|
\el \\ |
|
|
|
|
|
\el \\ |
|
|
|
|
|
\hforward &\defas& \bl |
|
|
|
|
|
\dLet\; (k' \dcons h' \dcons ks') = ks \;\dIn\; \\ |
|
|
|
|
|
\Vmap\,(\dlam\Record{p, s}\,(k \dcons ks).k\,\Record{p, h' \dcons k' \dcons s}\,ks)\,y\,(h' \dcons ks') \\ |
|
|
|
|
|
\el |
|
|
|
|
|
\end{equations} |
|
|
|
|
|
|
|
|
|
|
|
\textbf{Top level program} |
|
|
|
|
|
% |
|
|
|
|
|
\begin{equations} |
|
|
|
|
|
\pcps{M} &=& \cps{M} \sapp ((\dlam x\,ks.x) \scons (\dlam z\,ks.\Absurd~z) \scons \snil) \\ |
|
|
|
|
|
\end{equations} |
|
|
|
|
|
\vspace{-1em} |
|
|
|
|
|
|
|
|
|
|
|
\caption{Higher-order uncurried CPS translation of $\HCalc$} |
|
|
|
|
|
\label{fig:cps-higher-order-uncurried} |
|
|
|
|
|
\end{figure} |
|
|
|
|
|
% |
|
|
|
|
|
We now adapt our uncurried CPS translation to a higher-order one-pass |
|
|
|
|
|
CPS translation~\cite{DanvyF90} that partially evaluates |
|
|
|
|
|
administrative redexes at translation time. |
|
|
|
|
|
% |
|
|
|
|
|
Following Danvy and Nielsen~\cite{DanvyN03}, we adopt a two-level |
|
|
|
|
|
lambda calculus notation to distinguish between \emph{static} lambda |
|
|
|
|
|
abstraction and application in the meta language and \emph{dynamic} |
|
|
|
|
|
lambda abstraction and application in the target language. |
|
|
|
|
|
% |
|
|
|
|
|
The idea is that redexes marked as static are reduced as part of the |
|
|
|
|
|
translation (at compile time), whereas those marked as dynamic are |
|
|
|
|
|
reduced at runtime. |
|
|
|
|
|
% |
|
|
|
|
|
The CPS translation is given in |
|
|
|
|
|
Figure~\ref{fig:cps-higher-order-uncurried}. |
|
|
|
|
|
|
|
|
|
|
|
An overline denotes a static syntax constructor and an underline |
|
|
|
|
|
denotes a dynamic syntax constructor. In order to facilitate this |
|
|
|
|
|
notation we write application explicitly as an infix ``at'' symbol |
|
|
|
|
|
($@$). We assume the meta language is pure and hence respects the |
|
|
|
|
|
usual $\beta$ and $\eta$ equivalences. We extend the overline and |
|
|
|
|
|
underline notation to distinguish between static and dynamic let |
|
|
|
|
|
bindings. |
|
|
|
|
|
|
|
|
|
|
|
The reify operator $\reify$ maps static lists to dynamic ones and the |
|
|
|
|
|
reflect constructor $\reflect$ allows dynamic lists to be treated as |
|
|
|
|
|
static. |
|
|
|
|
|
% |
|
|
|
|
|
We use list pattern matching in the meta language. |
|
|
|
|
|
% |
|
|
|
|
|
\begin{equations} |
|
|
|
|
|
(\slam (\sk \scons \sP).\sM) \sapp (V \scons \VS) |
|
|
|
|
|
&=& \sLet\; \sk = V \;\sIn\; (\slam \sP.\sM) \sapp \VS \\ |
|
|
|
|
|
(\slam (\sk \scons \sP).\sM) \sapp \reflect V |
|
|
|
|
|
&=& \dLet\; (k \dcons ks) = V \;\dIn\; |
|
|
|
|
|
\sLet\; \sk = k \;\sIn\; (\slam \sP.\sM) \sapp \reflect ks \\ |
|
|
|
|
|
\end{equations} |
|
|
|
|
|
Here we let $\sM$ range over meta language expressions. |
|
|
|
|
|
|
|
|
|
|
|
Now the target calculus is refined so that all lambda abstractions and |
|
|
|
|
|
applications take two arguments, the $\usemlab{Lift}$ rule is removed, |
|
|
|
|
|
and the $\usemlab{App}$ rule is replaced by the following reduction |
|
|
|
|
|
rule. |
|
|
|
|
|
% |
|
|
|
|
|
\begin{reductions} |
|
|
|
|
|
\usemlab{AppTwo} & (\dlam x\,ks . \, M) \dapp V \dapp W &\reducesto& M[V/x, W/ks] \\ |
|
|
|
|
|
\end{reductions} |
|
|
|
|
|
% |
|
|
|
|
|
We add an extra dummy argument to the translation of type lambda |
|
|
|
|
|
abstractions and applications in order to ensure that all dynamic |
|
|
|
|
|
functions take exactly two arguments. |
|
|
|
|
|
% |
|
|
|
|
|
The single argument lambdas and applications from the first-order |
|
|
|
|
|
uncurried translation are still present, but now they are all static. |
|
|
|
|
|
|
|
|
|
|
|
In order to reason about the behaviour of the \semlab{Handle-op} rule, |
|
|
|
|
|
which is defined in terms of an evaluation context, we extend the CPS |
|
|
|
|
|
translation to evaluation contexts. |
|
|
|
|
|
% |
|
|
|
|
|
\begin{displaymath} |
|
|
|
|
|
\ba{@{}r@{~}c@{~}r@{~}l@{}} |
|
|
|
|
|
\cps{[~]} &=& \slam \sks. &\sks \\ |
|
|
|
|
|
\cps{\Let\; x \revto \EC \;\In\; N} &=& \slam \sk \scons \sks.&\cps{\EC} \sapp ((\dlam x\,ks.\cps{N} \sapp (k \scons \reflect ks)) \scons \sks) \\ |
|
|
|
|
|
\cps{\Handle\; \EC \;\With\; H} &=& \slam \sks. &\cps{\EC} \sapp (\cps{\hret} \scons \cps{\hops} \scons \sks) \\ |
|
|
|
|
|
\ea |
|
|
|
|
|
\end{displaymath} |
|
|
|
|
|
The following lemma is the characteristic property of the CPS |
|
|
|
|
|
translation on evaluation contexts. |
|
|
|
|
|
% |
|
|
|
|
|
This allows us to focus on the computation contained within |
|
|
|
|
|
an evaluation context. |
|
|
|
|
|
|
|
|
\chapter{Abstract machine semantics} |
|
|
\chapter{Abstract machine semantics} |
|
|
|
|
|
|
|
|
\part{Expressiveness} |
|
|
\part{Expressiveness} |
|
|
|