Browse Source

Note on reduction relation

master
Daniel Hillerström 4 years ago
parent
commit
b897751a38
  1. 3
      thesis.tex

3
thesis.tex

@ -6974,6 +6974,9 @@ exists some $N$ such that $M \reducesto N$.
of the form $\Return\; V$ for some value $V \in \ValCat$. of the form $\Return\; V$ for some value $V \in \ValCat$.
\end{definition} \end{definition}
% %
We write $\reducesto^\ast$ for the reflexive and transitive closure of
the reduction relation $\reducesto$.
%
\begin{theorem}[Progress]\label{thm:base-language-progress} \begin{theorem}[Progress]\label{thm:base-language-progress}
Suppose $\typ{}{M : C}$, then $M$ is normal or there exists Suppose $\typ{}{M : C}$, then $M$ is normal or there exists
$\typ{}{N : C}$ such that $M \reducesto^\ast N$. $\typ{}{N : C}$ such that $M \reducesto^\ast N$.

Loading…
Cancel
Save