Browse Source

Update uncurried translation.

master
Daniel Hillerström 5 years ago
parent
commit
c0fb1c22a7
  1. 166
      thesis.tex

166
thesis.tex

@ -55,6 +55,28 @@
\hfsetfillcolor{gray!40}
\hfsetbordercolor{gray!40}
% Cancelling
\newif\ifCancelX
\tikzset{X/.code={\CancelXtrue}}
\newcommand{\Cancel}[2][]{\relax
\ifmmode%
\tikz[baseline=(X.base),inner sep=0pt] {\node (X) {$#2$};
\tikzset{#1}
\draw[#1,overlay,shorten >=-2pt,shorten <=-2pt] (X.south west) -- (X.north east);
\ifCancelX
\draw[#1,overlay,shorten >=-2pt,shorten <=-2pt] (X.north west) -- (X.south east);
\fi}
\else
\tikz[baseline=(X.base),inner sep=0pt] {\node (X) {#2};
\tikzset{#1}
\draw[#1,overlay,shorten >=-2pt,shorten <=-2pt] (X.south west) -- (X.north east);
\ifCancelX
\draw[#1,overlay,shorten >=-2pt,shorten <=-2pt] (X.north west) -- (X.south east);
\fi}%
\fi}
\newcommand{\XCancel}[1]{\Cancel[red,X,line width=1pt]{#1}}
%%
%% Theorem environments
%%
@ -1890,7 +1912,7 @@ getting stuck on an unhandled operation.
\part{Implementation}
\chapter{Continuation-passing styles}
\chapter{Continuation-passing style}
\label{ch:cps}
Continuation-passing style (CPS) is a \emph{canonical} program
@ -1977,9 +1999,9 @@ consume stack space.
\dhil{The focus of the introduction should arguably not be to explain CPS.}
\dhil{Justify CPS as an implementation technique}
\dhil{Give a side-by-side reduction example of $\dec{fac}$ and $\dec{fac}_{\dec{cps}}$.}
\dhil{Define desirable properties of a CPS translation: properly tail-recursive, no static administrative redexes}
\section{Target calculus}
\section{Initial target calculus}
\label{sec:target-cps}
The syntax, semantics, and syntactic sugar for the target calculus
@ -2016,13 +2038,12 @@ term) to cope with the case of pattern matching failure.
\flushleft
\textbf{Syntax}
\begin{syntax}
\slab{Values} &V, W \in \UValCat &::= & x \mid \lambda x.M \mid \Rec\,g\,x.M \mid \Record{} \mid \Record{V, W} \mid \ell
\slab{Values} &U, V, W \in \UValCat &::= & x \mid \lambda x.M \mid \Rec\,g\,x.M \mid \Record{} \mid \Record{V, W} \mid \ell
\smallskip \\
\slab{Computations} &M,N \in \UCompCat &::= & V \mid M\,W \mid \Let\; \Record{x,y} = V \; \In \; N\\
& &\mid& \Case\; V\, \{\ell \mapsto M; y \mapsto N\} \mid \Absurd\,V
% & &\mid& \Vmap\;(x.M)\;V \\
\smallskip \\
\slab{Evaluation contexts} &\EC \in \UEvalCat &::= & [~] \mid \EC\;W \\ %\mid \Let\; x \revto \EC \;\In\; N \\
\slab{Evaluation contexts} &\EC \in \UEvalCat &::= & [~] \mid \EC\;W \\
\end{syntax}
\textbf{Reductions}
@ -2034,7 +2055,6 @@ term) to cope with the case of pattern matching failure.
\Case \; \ell \; \{ \ell \mapsto M; y \mapsto N\} &\reducesto& M \\
\usemlab{Case_2} &
\Case \; \ell \; \{ \ell' \mapsto M; y \mapsto N\} &\reducesto& N[\ell/y], \hfill\quad \text{if } \ell \neq \ell' \\
% \usemlab{VMap} & \Vmap\, (x.M) \,(\ell\, V) &\reducesto& \ell\, M[V/x] \\
\usemlab{Lift} &
\EC[M] &\reducesto& \EC[N], \hfill \text{if } M \reducesto N \\
\end{reductions}
@ -2112,8 +2132,8 @@ translate to value terms in the target.
\cps{\Case~V~\{\ell~x \mapsto M; y \mapsto N\}} &=&
\Case~\cps{V}~\{\ell~x \mapsto \cps{M}; y \mapsto \cps{N}\} \\
\cps{\Absurd~V} &=& \Absurd~\cps{V} \\
\cps{\Return~V} &=& \lambda k.k~\cps{V} \\
\cps{\Let~x \revto M~\In~N} &=& \lambda k.\cps{M}(\lambda x.\cps{N}k) \\
\cps{\Return~V} &=& \lambda k.k\,\cps{V} \\
\cps{\Let~x \revto M~\In~N} &=& \lambda k.\cps{M}(\lambda x.\cps{N}\,k) \\
\end{eqs}
\el
\]
@ -2121,7 +2141,7 @@ translate to value terms in the target.
\label{fig:cps-cbv}
\end{figure}
\section{First-order CPS translations of effect handlers}
\section{CPS transforming deep effect handlers}
\label{sec:fo-cps}
The translation of a computation term by the basic CPS translation in
@ -2160,7 +2180,7 @@ operation invocation can be reinstated when the resumption is invoked.
\subsection{Curried translation}
\label{sec:first-order-curried-cps}
We first consider a curried CPS translation that builds the
We first consider a curried CPS translation that extends the
translation of Figure~\ref{fig:cps-cbv}. The extension to operations
and handlers is localised to the additional features because currying
conveniently lets us get away with a shift in interpretation: rather
@ -2174,7 +2194,7 @@ is as follows.
%
\begin{equations}
\cps{\Do\;\ell\;V} &\defas& \lambda k.\lambda h.h~\Record{\ell,\Record{\cps{V}, \lambda x.k~x~h}} \\
\cps{\Handle \; M \; \With \; H} &\defas& \cps{M}~\cps{\hret}~\cps{\hops}, ~\text{where} \smallskip\\
\cps{\Handle \; M \; \With \; H} &\defas& \cps{M}~\cps{\hret}~\cps{\hops} \smallskip\\
\cps{\{ \Return \; x \mapsto N \}} &\defas& \lambda x . \lambda h . \cps{N} \\
\cps{\{ \ell~p~r \mapsto N_\ell \}_{\ell \in \mathcal{L}}}
&\defas&
@ -2229,11 +2249,11 @@ which makes it unviable in practice.
basis for an implementation. This deficiency is essentially due to
the curried representation of the continuation stack.
\item The image of the translation yields context independent
administrative redexes, i.e. redexes that could be reduced
statically. This is a classic problem with CPS translation, which
is typically dealt with by introducing a second pass to clean up
the image~\cite{DanvyF92}.
\item The image of the translation yields static administrative
redexes, i.e. redexes that could be reduced statically. This is a
classic problem with CPS translation, which is typically dealt
with by introducing a second pass to clean up the
image~\cite{DanvyF92}.
\end{enumerate}
The following minimal example readily illustrates both issues.
@ -2297,11 +2317,63 @@ continuations~\citeyearpar{MaterzokB12}.
\subsection{Uncurried translation}
\label{sec:first-order-uncurried-cps}
%
%
\begin{figure}
\flushleft
\textbf{Syntax}
\begin{syntax}
\slab{Computations} &M,N \in \UCompCat &::= & \cdots \mid \XCancel{M\,W} \mid V\,W \mid U\,V\,W \smallskip \\
\XCancel{\slab{Evaluation contexts}} &\XCancel{\EC \in \UEvalCat} &::= & \XCancel{[~] \mid \EC\;W} \\
\end{syntax}
In this section we seek to refine the CPS translation for deep
handlers to be properly tail-recursive. As remarked in the previous
section, the crux of the problem is the curried representation of the
continuation pair. To rectify this problem we can adapt the standard
\textbf{Reductions}
\begin{reductions}
\usemlab{App_1} & (\lambda x . M) V &\reducesto& M[V/x] \\
\usemlab{App_2} & (\lambda x . \lambda y. \, M) V\, W &\reducesto& M[V/x,W/y] \\
\XCancel{\usemlab{Lift}} & \XCancel{\EC[M]} &\reducesto& \XCancel{\EC[N], \hfill \text{if } M \reducesto N}
\end{reductions}
\caption{Adjustments to the syntax and semantics of $\UCalc$.}
\label{fig:refined-cps-cbv-target}
\end{figure}
%
In this section we will refine the CPS translation for deep handlers
to make it properly tail-recursive. As remarked in the previous
section, the lack of tail-recursion is apparent in the syntax of the
target calculus $\UCalc$ as it permits an arbitrary computation term
in the function position of an application term.
%
As a first step we may impose a syntax restriction in target calculus
such that the term in function position must be a value. With this
restriction the syntax of $\UCalc$ implements the property that any
term constructor features at most one computation term, and this
computation term always appears in tail position. Thus this
restriction suffices to ensure that every function application will be
in tail-position.
%
Figure~\ref{fig:refined-cps-cbv-target} contains the adjustments to
syntax and semantics of $\UCalc$. The target calculus now supports
both unary and binary application forms. As we shall see shortly,
binary application turns out be convenient when we enrich the notion
of continuation. Both application forms are comprised only of value
terms. As a result the dynamic semantics of $\UCalc$ no longer makes
use of evaluation contexts, hence we remove them altogether. The
reduction rule $\usemlab{App_1}$ applies to unary application and it
is the same as the $\usemlab{App}$-rule in
Figure~\ref{fig:cps-cbv-target}. The new $\usemlab{App_2}$-rule
applies to binary application: it performs a simultaneous substitution
of the arguments $V$ and $W$ for the parameters $x$ and $y$,
respectively, in the function body $M$.
%
These changes to $\UCalc$ immediately invalidates the curried
translation from the previous section as the image of the translation
is no longer well-formed.
%
% The crux of the problem is the curried representation of the
% continuation pair.
To rectify this problem we can adapt the standard
technique of \citet{MaterzokB12} to uncurry our CPS
translation. Uncurrying necessitates a change of representation for
continuations: a continuation is now an alternating list of pure
@ -2314,13 +2386,12 @@ translation is adjusted as follows to account for the new
representation of continuations.
%
\begin{equations}
\cps{\Return~V} &\defas& \lambda (k \cons ks).k~\cps{V}~ks \\
\cps{\Let~x \revto M~\In~N} &\defas& \lambda (k \cons ks).\cps{M}((\lambda x.\lambda ks.\cps{N}(k \cons ks)) \cons ks)
\cps{\Return~V} &\defas& \lambda (k \cons ks).k\,\cps{V}\,ks \\
\cps{\Let~x \revto M~\In~N} &\defas& \lambda (k \cons ks).\cps{M}((\lambda x.\lambda ks'.\cps{N}(k \cons ks')) \cons ks)
\smallskip \\
\cps{\Do\;\ell\;V} &\defas& \lambda (k \cons h \cons ks).h~\Record{\ell,\Record{\cps{V}, \lambda x.\lambda ks.k~x~(h \cons ks)}}~ks
\cps{\Do\;\ell\;V} &\defas& \lambda (k \cons h \cons ks).h\,\Record{\ell,\Record{\cps{V}, \lambda x.\lambda ks'.k\,x\,(h \cons ks')}}\,ks
\smallskip \\
\cps{\Handle \; M \; \With \; H} &\defas& \lambda ks . \cps{M} (\cps{\hret} \cons \cps{\hops} \cons ks)
, ~\text{where} \smallskip\\
\cps{\Handle \; M \; \With \; H} &\defas& \lambda ks . \cps{M} (\cps{\hret} \cons \cps{\hops} \cons ks) \smallskip\\
\cps{\{\Return \; x \mapsto N\}} &\defas& \lambda x.\lambda ks.\Let\; (h \cons ks') = ks \;\In\; \cps{N}\,ks'
\\
\cps{\{\ell \; p \; r \mapsto N_\ell\}_{\ell \in \mathcal{L}}}
@ -2334,14 +2405,12 @@ representation of continuations.
\Let\; (k' \cons h' \cons ks') = ks \;\In\; \\
h'\,\Record{y, \Record{p, \lambda x.\lambda ks''.\,r\,x\,(k' \cons h' \cons ks'')}}\,ks'\\
\el \smallskip\\
\pcps{M} &\defas& \cps{M}~((\lambda x\,ks.x) \cons (\lambda \Record{z,\Record{p,r}}. \lambda ks.\,\Absurd~z) \cons \nil)
\pcps{M} &\defas& \cps{M}~((\lambda x.\lambda ks.x) \cons (\lambda \Record{z,\Record{p,r}}. \lambda ks.\,\Absurd~z) \cons \nil)
\end{equations}
%
The other cases are as in the original CPS translation in
Figure~\ref{fig:cps-cbv}. The stacks of continuations are now lists,
where pure continuations and effect continuations occupy alternating
positions.
Figure~\ref{fig:cps-cbv}.
%
Since we now use a list representation for the stacks of
continuations, we have had to modify the translations of all the
constructs that manipulate continuations. For $\Return$ and $\Let$, we
@ -2356,12 +2425,35 @@ is the same as before, except for explicit passing of the
$ks$. Forwarding now pattern matches on the stack to extract the next
continuation pair, rather than accepting them as arguments.
%
Proper tail recursion coincides with a refinement of the target
syntax. Now applications are either of the form $V\,W$ or of the form
$U\,V\,W$. We could also add a rule for applying a two argument lambda
abstraction to two arguments at once and eliminate the
$\usemlab{Lift}$ rule, but we defer this until our higher order
translation in Section~\ref{sec:higher-order-uncurried-cps}.
% Proper tail recursion coincides with a refinement of the target
% syntax. Now applications are either of the form $V\,W$ or of the form
% $U\,V\,W$. We could also add a rule for applying a two argument lambda
% abstraction to two arguments at once and eliminate the
% $\usemlab{Lift}$ rule, but we defer this until our higher order
% translation in Section~\ref{sec:higher-order-uncurried-cps}.
Let us revisit the example from
Section~\ref{sec:first-order-curried-cps} to see first hand that our
refined translation makes the example properly tail-recursive.
%
\begin{equations}
\pcps{\Return\;\Record{}}
&= & (\lambda (k \cons ks).k\,\Record{}\,ks)\,((\lambda x.\lambda ks.x) \cons (\lambda \Record{z, \_}.\lambda ks.\Absurd\,z) \cons \nil) \\
&\reducesto& (\lambda x.\lambda ks.x)\,\Record{}\,((\lambda \Record{z,\_}.\lambda ks.\Absurd\,z) \cons \nil)\\
&\reducesto& \Record{}
\end{equations}
%
The image of this uncurried translation admits three
$\reducesto$-reduction steps (disregarding the administrative steps
induced by pattern matching), which is one less step than admitted by
the image of the curried translation. The `missing' step is precisely
the partial application of the initial pure continuation function,
which was not in tail position. Note, however, that the first
reduction is still administrative. The involved redex is still static,
meaning that it could be eliminated at translation time.
%
\dhil{Discuss dynamic and static administrative redex.}
\chapter{Abstract machine semantics}

Loading…
Cancel
Save