Browse Source

fix type substitution

master
Daniel Hillerström 6 years ago
parent
commit
cb1d5c056a
  1. 115
      thesis.tex

115
thesis.tex

@ -593,6 +593,59 @@ to $\alpha$-conversion~\cite{Church32} of types.
\]
%
\paragraph{Type substitution}
We define a type substitution map,
$\sigma : (\TyVarCat \times \TypeCat)^\ast$ as list of pairs mapping a
type variable to its replacement. The domain of a substitution map is
set generated by projecting the first component, i.e.
%
\[
\bl
\dom : (\TyVarCat \times \TypeCat)^\ast \to \TyVarCat\\
\dom(\sigma) \defas \{ \alpha \mid (\alpha,\_) \in \sigma \}
\el
\]
%
The application of a type substitution map on a type term, written
$T\sigma$ for some type $T$, is defined inductively on the type
structure as follows.
%
\[
\ba[t]{@{~}l@{~}c@{~}r}
\multicolumn{3}{c}{
\begin{eqs}
(A \eff E)\sigma &\defas& A\sigma \eff E\sigma\\
(A \to C)\sigma &\defas& A\sigma \to C\sigma\\
(\forall \alpha^K.C)\sigma &\defas& \forall \alpha^K.C\sigma \quad \text{if } \alpha \notin \dom(\sigma)\\
\alpha\sigma &\defas& \begin{cases}
A & \text{if } (\alpha,A) \in \sigma\\
\alpha & \text{otherwise}
\end{cases}
\end{eqs}}\\
\begin{eqs}
\Record{R}\sigma &\defas& \Record{R[B/\beta]}\\
{[R]}\sigma &\defas& [R\sigma]\\
\{R\}\sigma &\defas& \{R\sigma\}\\
\cdot\sigma &\defas& \cdot\\
\rho\sigma &\defas& \begin{cases}
R & \text{if } (\rho, R) \in \sigma\\
\rho & \text{otherwise}
\end{cases}\\
\end{eqs}
& ~~~~~~~~~~ &
\begin{eqs}
(\ell : P;R)\sigma &\defas& (\ell : P\sigma; R\sigma)\\
\theta\sigma &\defas& \begin{cases}
P & \text{if } (\theta,P) \in \sigma\\
\theta & \text{otherwise}
\end{cases}\\
\Abs\sigma &\defas& \Abs\\
\Pre{A}\sigma &\defas& \Pre{A\sigma}
\end{eqs}
\ea
\]
%
\paragraph{Types and their inhabitants}
We now have the basic vocabulary to construct types in $\BCalc$. For
instance, the signature of the standard polymorphic identity function
@ -680,6 +733,9 @@ above, an inhabitant of this type performs no effects of its own as
the (right-most) effect row is a singleton row containing a distinct
effect variable $\varepsilon'$.
\paragraph{Syntactic sugar}
Detail the syntactic sugar\dots
\subsection{Terms}
\label{sec:base-language-terms}
%
@ -702,7 +758,7 @@ effect variable $\varepsilon'$.
\end{figure}
%
The syntax for terms is given in
Figure~\ref{fig:base-language-term-syntax}. We assume countably
Figure~\ref{fig:base-language-term-syntax}. We assume a countably
infinite set of names $\VarCat$ from which we draw fresh variable
names. We shall typically denote term variables by $x$, $y$, or $z$.
%
@ -711,11 +767,11 @@ The syntax partitions terms into values and computations.
Value terms comprise variables ($x$), lambda abstraction
($\lambda x^A . \, M$), type abstraction ($\Lambda \alpha^K . \, M$),
and the introduction forms for records and variants. Records are
introduced using the empty record $\Record{}$ and record extension
$\Record{\ell = V; W}$, whilst variants are introduced using injection
$(\ell~V)^R$, which injects a field with label $\ell$ and value $V$
into a row whose type is $R$. We include the row type annotation in
order to support bottom-up type reconstruction.
introduced using the empty record $(\Record{})$ and record extension
$(\Record{\ell = V; W})$, whilst variants are introduced using
injection $((\ell~V)^R)$, which injects a field with label $\ell$ and
value $V$ into a row whose type is $R$. We include the row type
annotation in to support bottom-up type reconstruction.
All elimination forms are computation terms. Abstraction and type
abstraction are eliminated using application ($V\,W$) and type
@ -741,8 +797,12 @@ kind information (term abstraction, type abstraction, injection,
operations, and empty cases). However, we shall omit these annotations
whenever they are clear from context.
\paragraph{Free variables} We define the function
$\FV : \TermCat \to \VarCat$ to compute the free variables of any
\paragraph{Free variables} A given term is said to be \emph{closed} if
every applied occurrence of a variable is preceded by some
corresponding binding occurrence. Any applied occurrence of a variable
that is not preceded by a binding occurrence is said be \emph{free
variable}. We define the function $\FV : \TermCat \to \VarCat$
inductively on the term structure to compute the free variables of any
given term.
%
\[
@ -771,6 +831,12 @@ given term.
\end{eqs}
\el
\]
%
The function computes the set of free variables bottom-up. Most cases
are homomorphic on the syntax constructors. The interesting cases are
those constructs which feature term binders: lambda abstraction, let
bindings, pair destructing, and case splitting. In each of those cases
we subtract the relevant binder(s) from the set of free variables.
\subsection{Typing rules}
\label{sec:base-language-type-rules}
@ -891,38 +957,7 @@ domain type of the abstractor agree.
The type application rule \tylab{PolyApp} tells us that a type
application $V\,A$ is well-typed whenever the abstractor term $V$ has
the polymorphic type $\forall \alpha^K.C$ and the type $A$ has kind
$K$. This rule makes use of type substitution. We write $C[A/\alpha]$
to mean substitute some type $A$ for some type variable $\alpha$ in
some type $C$. We define type substitution as a ternary function
defined as follows.
%
\[
\begin{eqs}
-[-/-] &:& \TypeCat \times \TypeCat \times \TyVarCat \to \TypeCat\\
(A \eff E)[B/\beta] &\defas& A[B/\beta] \eff E[B/\beta]\\
(A \to C)[B/\beta] &\defas& A[B/\beta] \to C[B/\beta]\\
(\forall \alpha^K.C)[B/\beta] &\defas& \forall \alpha^K.C[B/\beta] \quad \text{if } \alpha \neq \beta \text{ and } \alpha \notin \FTV(B)\\
\alpha[B/\beta] &\defas& \begin{cases}
B & \text{if } \alpha = \beta\\
\alpha & \text{otherwise}
\end{cases}\\
\Record{R}[B/\beta] &\defas& \Record{R[B/\beta]}\\
{[R]}[B/\beta] &\defas& [R[B/\beta]]\\
\{R\}[B/\beta] &\defas& \{R[B/\beta]\}\\
\cdot[B/\beta] &\defas& \cdot\\
\rho[B/\beta] &\defas& \begin{cases}
B & \text{if } \rho = \beta\\
\rho & \text{otherwise}
\end{cases}\\
(\ell : P;R)[B/\beta] &\defas& (\ell : P[B/\beta]; R[B/\beta])\\
\theta[B/\beta] &\defas& \begin{cases}
B & \text{if } \rho = \beta\\
\theta & \text{otherwise}
\end{cases}\\
\Abs[B/\beta] &\defas& \Abs\\
\Pre{A}[B/\beta] &\defas& \Pre{A[B/\beta]}
\end{eqs}
\]
$K$. This rule makes use of type substitution.
%
The \tylab{Split} rule handles typing of record destructing. When
splitting a record term $V$ on some label $\ell$ binding it to $x$ and

Loading…
Cancel
Save