Browse Source

Reorganise

master
Daniel Hillerström 5 years ago
parent
commit
cc7a39647c
  1. 97
      thesis.tex

97
thesis.tex

@ -568,42 +568,6 @@ the translation preserve typeability.
\citet{Shan04} shows that dynamic delimited control and static \citet{Shan04} shows that dynamic delimited control and static
delimited control is macro-expressible in an untyped setting. delimited control is macro-expressible in an untyped setting.
\paragraph{A language for understanding control}
%
To look at control we will a simply typed fine-grain call-by-value
calculus. The calculus is essentially the same as the one used in
Chapter~\ref{ch:handlers-efficiency}, except that here we will have an
explicit invocation form for continuations. Although, in practice most
systems disguise continuations as first-class functions, but for a
theoretical examination it is convenient to treat them specially such
that continuation invocation is a separate reduction rule from
ordinary function application. Figure~\ref{fig:pcf-lang-control}
depicts the syntax of types and terms in the calculus.
%
\begin{figure}
\centering
\begin{syntax}
\slab{Types} & A,B &::=& \UnitType \mid \Zero \mid A \to B \mid A + B \mid A \times B \mid \Cont\,\Record{A;B} \smallskip\\
\slab{Values} & V,W &::=& x \mid \lambda x^A.M \mid V + W \mid \Record{V;W} \mid \Unit \mid \cont_\EC\\
\slab{Computations} & M,N &::=& \Return\;V \mid \Let\;x \revto M \;\In\;N \mid \Let \Record{x;y} = V \;\In\; N \\
& &\mid& \Absurd^A\;V \mid V\,W \mid \Continue~V~W \smallskip\\
\slab{Evaluation\textrm{ }contexts} & \EC &::=& [\,] \mid \Let\;x \revto \EC \;\In\;N
\end{syntax}
\caption{Types and term syntax}\label{fig:pcf-lang-control}
\end{figure}
%
The types are the standard simple types with the addition of the empty
type $\Zero$ and the continuation object type $\Cont\,\Record{A;B}$,
which is parameterised by an argument type and a result type,
respectively. The static semantics is standard as well, except for the
continuation invocation primitive $\Continue$.
%
\begin{mathpar}
\inferrule*
{\typ{\Gamma}{V : A} \\ \typ{\Gamma}{W : \Cont\,\Record{A;B}}}
{\typ{\Gamma}{\Continue~W~V : B}}
\end{mathpar}
\section{Classifying continuations} \section{Classifying continuations}
% \citeauthor{Reynolds93} has written a historical account of the % \citeauthor{Reynolds93} has written a historical account of the
@ -756,6 +720,42 @@ non-exhaustive list of first-class control operators.
\end{table} \end{table}
% %
\paragraph{An optical device for control}
%
To look at control we will a simply typed fine-grain call-by-value
calculus. The calculus is essentially the same as the one used in
Chapter~\ref{ch:handlers-efficiency}, except that here we will have an
explicit invocation form for continuations. Although, in practice most
systems disguise continuations as first-class functions, but for a
theoretical examination it is convenient to treat them specially such
that continuation invocation is a separate reduction rule from
ordinary function application. Figure~\ref{fig:pcf-lang-control}
depicts the syntax of types and terms in the calculus.
%
\begin{figure}
\centering
\begin{syntax}
\slab{Types} & A,B &::=& \UnitType \mid \Zero \mid A \to B \mid A + B \mid A \times B \mid \Cont\,\Record{A;B} \smallskip\\
\slab{Values} & V,W &::=& x \mid \lambda x^A.M \mid V + W \mid \Record{V;W} \mid \Unit \mid \cont_\EC\\
\slab{Computations} & M,N &::=& \Return\;V \mid \Let\;x \revto M \;\In\;N \mid \Let \Record{x;y} = V \;\In\; N \\
& &\mid& \Absurd^A\;V \mid V\,W \mid \Continue~V~W \smallskip\\
\slab{Evaluation\textrm{ }contexts} & \EC &::=& [\,] \mid \Let\;x \revto \EC \;\In\;N
\end{syntax}
\caption{Types and term syntax}\label{fig:pcf-lang-control}
\end{figure}
%
The types are the standard simple types with the addition of the empty
type $\Zero$ and the continuation object type $\Cont\,\Record{A;B}$,
which is parameterised by an argument type and a result type,
respectively. The static semantics is standard as well, except for the
continuation invocation primitive $\Continue$.
%
\begin{mathpar}
\inferrule*
{\typ{\Gamma}{V : A} \\ \typ{\Gamma}{W : \Cont\,\Record{A;B}}}
{\typ{\Gamma}{\Continue~W~V : B}}
\end{mathpar}
\subsection{Undelimited control operators} \subsection{Undelimited control operators}
% %
The early inventions of undelimited control operators were driven by The early inventions of undelimited control operators were driven by
@ -1084,20 +1084,21 @@ In our framework both operators are value forms.
V,W \in \ValCat ::= \cdots \mid \FelleisenC \mid \FelleisenF V,W \in \ValCat ::= \cdots \mid \FelleisenC \mid \FelleisenF
\] \]
% %
The static semantics of $\FelleisenC$ are the same as $\Callcc$,
whilst the static semantics of $\FelleisenF$ are the same as
$\Callcomc$.
\begin{mathpar}
\inferrule*
{~}
{\typ{\Gamma}{\FelleisenC : (\Cont\,\Record{A;\Zero} \to A) \to A}}
% The static semantics of $\FelleisenC$ are the same as $\Callcc$,
% whilst the static semantics of $\FelleisenF$ are the same as
% $\Callcomc$.
% \begin{mathpar}
% \inferrule*
% {~}
% {\typ{\Gamma}{\FelleisenC : (\Cont\,\Record{A;\Zero} \to A) \to A}}
\inferrule*
{~}
{\typ{\Gamma}{\FelleisenF : (\Cont\,\Record{A;A} \to A) \to A}}
\end{mathpar}
% \inferrule*
% {~}
% {\typ{\Gamma}{\FelleisenF : (\Cont\,\Record{A;A} \to A) \to A}}
% \end{mathpar}
% %
The dynamic semantics of $\FelleisenC$ and $\FelleisenF$ also differ.
The dynamic semantics of $\FelleisenC$ and $\FelleisenF$ are as
follows.
% %
\begin{reductions} \begin{reductions}
\slab{C\textrm{-}Capture} & \EC[\FelleisenC\,V] &\reducesto& V~\qq{\cont_{\EC}}\\ \slab{C\textrm{-}Capture} & \EC[\FelleisenC\,V] &\reducesto& V~\qq{\cont_{\EC}}\\

Loading…
Cancel
Save