From ccd1f59d576df32128508842caebcebd705ef3b0 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Daniel=20Hillerstr=C3=B6m?= Date: Thu, 27 May 2021 00:50:09 +0100 Subject: [PATCH] WIP --- thesis.tex | 15 +++++++++++---- 1 file changed, 11 insertions(+), 4 deletions(-) diff --git a/thesis.tex b/thesis.tex index 7b23386..2dd203c 100644 --- a/thesis.tex +++ b/thesis.tex @@ -14545,7 +14545,7 @@ $N'$ such that $N' \approxa \sdtrans{N}$ and $M' \reducesto^+ N'$. % \begin{derivation} & \sdtrans{\ShallowHandle\;\EC[\Do\;\ell~V]\;\With\;H}\\ - =\reducesto^\ast& \reason{\semlab{Op} ($\ell \notin \BL(\sdtrans{\EC})$), $2\times$\semlab{Let},\semlab{Split},\semlab{App}, Lemma~\ref{lem:sdtrans-subst}}\\ + =\reducesto^+& \reason{\semlab{Op} ($\ell \notin \BL(\sdtrans{\EC})$), $2\times$\semlab{Let},\semlab{Split},\semlab{App}, Lemma~\ref{lem:sdtrans-subst}}\\ &\sdtrans{N_\ell[\lambda x. \bl \Let\;z \revto (\lambda y.\Handle\;\EC[\Return\;y]\;\With\;H)~x\;\In\\ @@ -14588,9 +14588,16 @@ $N'$ such that $N' \approxa \sdtrans{N}$ and $M' \reducesto^+ N'$. \sdtrans{\EC}[\Return\;W]$. \item Inductive step: Assume $M' \reducesto M''$ and - $M'' \approxa \sdtrans{\ShallowHandle\;\EC[\Do\;\ell~V]\;\With\;H}$. Take $N' = M''$ then by the induction hypothesis $M' \reducesto N'$ - - \item Inductive step: Assume $admin(\EC)$ and + $M'' \approxa \sdtrans{\ShallowHandle\;\EC[\Do\;\ell~V]\;\With\;H}$. Using a similar argument to above we get that + \[ + \sdtrans{\ShallowHandle\;\EC[\Do\;\ell~V]\;\With\;H} + \reducesto^+ \sdtrans{N_\ell[V/p,\lambda y.\EC[\Return\;y]/r]}. + \] + Take $N' = M''$ then by the first induction hypothesis + $M' \reducesto N'$ and by the second induction hypothesis + $N' \approxa \sdtrans{N_\ell[V/p,\lambda y.\EC[\Return\;y]/r]}$ as + desired. + \item Inductive step: Assume $admin(\EC')$ and $M'' \approxa \sdtrans{\ShallowHandle\;\EC[\Do\;\ell~V]\;\With\;H}$. \end{enumerate} \end{proof}