My PhD dissertation at the University of Edinburgh, Scotland https://www.dhil.net/research/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

396 lines
9.6 KiB

(* Companion for "State of effectful programming"
Tested with OCaml 4.10.0+multicore. *)
(* Generic direct-style incr_even *)
let even : int -> bool
= fun n -> n mod 2 = 0
let incr_even : (unit -> int) * (int -> unit) -> unit -> bool
= fun (get, put) () ->
let st = get () in
put (1 + st);
even st
(* Delimited control *)
module Prompt : sig
type 'a t
val make : unit -> 'a t
val reify : 'a t -> (('b -> 'a) -> 'a) -> 'b
val install : 'a t -> (unit -> 'a) -> 'a
end = struct
type 'a t = {
install : (unit -> 'a) -> 'a;
reify : 'b. (('b -> 'a) -> 'a) -> 'b
}
let make (type a) () =
let module M = struct
effect Prompt : (('b -> a) -> a) -> 'b
end
in
let reify f = perform (M.Prompt f) in
let install f =
match f () with
| x -> x
| effect (M.Prompt f) k -> f (continue k)
in
{ install; reify }
let install { install; _ } = install
let reify { reify; _ } = reify
let resume k v = continue k v
end
module type CTRL = sig
type ans
val reset : (unit -> ans) -> ans
val shift : (('a -> ans) -> ans) -> 'a
end
module Ctrl(R : sig type ans end) : sig
include CTRL with type ans = R.ans
end = struct
type ans = R.ans
let p : ans Prompt.t = Prompt.make ()
let reset m =
Prompt.install p m
let shift f =
Prompt.reify p
(fun k ->
Prompt.install p
(fun () ->
f (fun x ->
Prompt.install p
(fun () -> k x))))
end
module CtrlState
(S : sig type s end)
(R : sig type ans end): sig
type s = S.s
type ans = s -> R.ans * s
val get : unit -> s
val put : s -> unit
val run : (unit -> R.ans) -> ans
end = struct
type s = S.s
type ans = s -> R.ans * s
module Ctrl = Ctrl(struct type nonrec ans = ans end)
let get () = Ctrl.shift (fun k -> fun st -> k st st)
let put st' = Ctrl.shift (fun k -> fun st -> k () st')
let run m =
Ctrl.reset
(fun () ->
let x = m () in
fun st -> (x, st))
end
module CtrlIntState = CtrlState(struct type s = int end)(struct type ans = bool end)
(* Monadic programming *)
module type MONAD = sig
type 'a t
val return : 'a -> 'a t
val (>>=) : 'a t -> ('a -> 'b t) -> 'b t
end
(** State monad **)
module type STATE_MONAD = sig
type ans
type s
include MONAD
val get : unit -> s t
val put : s -> unit t
val run : (unit -> ans t) -> s -> ans * s
end
module StateMonad(S : sig type s end)(R : sig type ans end): sig
include STATE_MONAD with type s = S.s
and type ans = R.ans
end = struct
type ans = R.ans
type s = S.s
type 'a t = s -> 'a * s
let return : 'a -> 'a t
= fun x -> fun st -> (x, st)
let (>>=) : 'a t -> ('a -> 'b t) -> 'b t
= fun m k -> fun st ->
let (x, st') = m st in
k x st'
let get : unit -> s t
= fun () st -> (st, st)
let put : s -> unit t
= fun st st' -> ((), st)
let run : (unit -> ans t) -> s -> ans * s
= fun m st -> m () st
end
module IntStateMonad = StateMonad(struct type s = int end)(struct type ans = bool end)
(** Continuation monad **)
module type CONTINUATION_MONAD = sig
type r
include MONAD with type 'a t = ('a -> r) -> r
end
module ContinuationMonad(R : sig type ans end): sig
include CONTINUATION_MONAD with type r = R.ans
end = struct
type r = R.ans
type 'a t = ('a -> r) -> r
let return : 'a -> 'a t
= fun x -> fun k -> k x
let (>>=) : 'a t -> ('a -> 'b t) -> 'b t
= fun m k -> fun c ->
m (fun x -> k x c)
end
module ContinuationStateMonad
(S : sig type s end)
(R : sig type ans end): sig
type s = S.s
type ans = R.ans
include CONTINUATION_MONAD with type r = s -> ans * s
val get : unit -> s t
val put : s -> unit t
val run : (unit -> ans t) -> s -> ans * s
end = struct
type s = S.s
type ans = R.ans
module ContinuationMonad : CONTINUATION_MONAD with type r = s -> ans * s
= ContinuationMonad(struct type nonrec ans = s -> ans * s end)
include ContinuationMonad
let get : unit -> s t
= fun () -> fun k -> fun st -> k st st
let put : s -> unit t
= fun st' -> fun k -> fun st -> k () st'
let run : (unit -> R.ans t) -> s -> R.ans * s =
fun m st -> m () (fun x -> fun st -> (x, st)) st
end
module ContinuationIntStateMonad
= ContinuationStateMonad(struct type s = int end)(struct type ans = bool end)
(** Free monad **)
module type FUNCTOR = sig
type 'a t
val fmap : ('a -> 'b) -> 'a t -> 'b t
end
module type FREE_MONAD = sig
type 'a op
type 'a free = Return of 'a
| Op of 'a free op
include MONAD with type 'a t = 'a free
val do' : 'a op -> 'a free
end
module FreeMonad(F : FUNCTOR) : sig
include FREE_MONAD with type 'a op = 'a F.t
end = struct
type 'a op = 'a F.t
type 'a free = Return of 'a
| Op of 'a free F.t
type 'a t = 'a free
let return : 'a -> 'a t
= fun x -> Return x
let rec (>>=) : 'a t -> ('a -> 'b t) -> 'b t
= fun m k ->
match m with
| Return x -> k x
| Op y -> Op (F.fmap (fun m' -> m' >>= k) y)
let do' : 'a F.t -> 'a free
= fun op -> Op (F.fmap (fun x -> Return x) op)
end
module type FREE_STATE = sig
type s
type 'r opsig = Get of (s -> 'r)
| Put of s * (unit -> 'r)
include FUNCTOR with type 'r t = 'r opsig
end
module FreeState(S : sig type s end) = struct
type s = S.s
type 'r opsig = Get of (s -> 'r)
| Put of s * (unit -> 'r)
type 'r t = 'r opsig
let fmap : ('a -> 'b) -> 'a t -> 'b t
= fun f op ->
match op with
| Get k -> Get (fun st -> f (k st))
| Put (st', k) -> Put (st', fun st -> f (k ()))
end
module FreeIntStateMonad: sig
include STATE_MONAD with type s = int
and type ans = bool
end = struct
module rec FreeIntState : FREE_STATE with type s = int
= FreeState(struct type s = int end)
and FreeIntStateMonad : FREE_MONAD with type 'r op = 'r FreeIntState.opsig
= FreeMonad(FreeIntState)
open FreeIntState
include FreeIntStateMonad
type s = int
type ans = bool
let get : unit -> s t
= fun () -> do' (Get (fun st -> st))
let put : s -> unit t
= fun st -> do' (Put (st, fun () -> ()))
let rec run : (unit -> ans t) -> s -> ans * s
= fun m st ->
match m () with
| Return x -> (x, st)
| Op (Get k) -> run (fun () -> k st) st
| Op (Put (st', k)) -> run k st'
end
(** Monadic reflection **)
module Reflect
(M : MONAD)
(R : sig type ans end): sig
type ans = R.ans
val reify : (unit -> ans) -> ans M.t
val reflect : 'a M.t -> 'a
end = struct
type ans = R.ans
effect Reflect : 'a M.t -> 'a
let reify : (unit -> ans) -> ans M.t
= fun f ->
let open M in
match f () with
| x -> return x
| effect (Reflect m) k -> m >>= (continue k)
let reflect : 'a M.t -> 'a
= fun m ->
perform (Reflect m)
end
module ReflectIntStateMonad
= Reflect(IntStateMonad)(struct type ans = bool end)
module ReflectIntState = struct
open ReflectIntStateMonad
let get : unit -> int
= fun () -> reflect (IntStateMonad.get ())
let put : int -> unit
= fun st -> reflect (IntStateMonad.put st)
let run : (unit -> bool) -> int -> bool * int
= fun m st -> IntStateMonad.run (fun () -> reify m) st
end
(* Generic monadic incr_even *)
module MonadExample(T : STATE_MONAD with type s = int) = struct
let incr_even : unit -> bool T.t
= fun () ->
let open T in
(get ()) >>= (fun st -> put (1 + st)
>>= (fun () -> return (even st)))
end
(** Effect handlers **)
module type STATE_HANDLER = sig
type s
val get : unit -> s
val put : s -> unit
val run : (unit -> 'a) -> s -> 'a * s
end
module StateHandler(S : sig type s end) : STATE_HANDLER with type s = S.s = struct
type s = S.s
effect Put : s -> unit
let put st = perform (Put st)
effect Get : unit -> s
let get () = perform (Get ())
let run
= fun m st ->
let f = match m () with
| x -> (fun st -> (x, st))
| effect (Put st') k -> (fun st -> continue k () st')
| effect (Get ()) k -> (fun st -> continue k st st)
in f st
end
module IntStateHandler = StateHandler(struct type s = int end)
let run_examples () =
let examples = [
"builtin", (fun st ->
let st = ref st in let v = !st in st := 1 + v; (even v, !st));
"pure state passing", (fun st -> (even st, 1 + st));
"shift/reset", (fun st ->
CtrlIntState.run (incr_even CtrlIntState.(get, put)) st);
"state monad", (fun st ->
let module MonadStateExample = MonadExample(IntStateMonad) in
IntStateMonad.run MonadStateExample.incr_even st);
"continuation monad", (fun st ->
let module ContinuationMonadExample = MonadExample(ContinuationIntStateMonad) in
ContinuationIntStateMonad.run ContinuationMonadExample.incr_even st);
"free monad", (fun st ->
let module FreeMonadExample = MonadExample(FreeIntStateMonad) in
FreeIntStateMonad.run FreeMonadExample.incr_even st);
"monadic reflection", (fun st ->
ReflectIntState.run (incr_even ReflectIntState.(get, put)) st);
"state handler", (fun st ->
IntStateHandler.run (incr_even IntStateHandler.(get, put)) st) ]
in
List.map (fun (s, f) -> (s, f 4)) examples
(* module IntStateMRefl : MREFL with type ans := bool and type 'a t = 'a IntState.t
* = MRefl(struct type ans = bool end)(IntState)
*
* let get () = IntStateMRefl.reflect (IntState.get ())
* let put st = IntStateMRefl.reflect (IntState.put st)
* let run m st = IntState.run (IntStateMRefl.reify m) st
*
* let even : int -> bool
* = fun n -> n mod 2 = 0
*
* let incr_even : unit -> bool
* = fun () ->
* let st = get () in
* put (1 + st);
* even st *)