My PhD dissertation at the University of Edinburgh, Scotland https://www.dhil.net/research/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

1762 lines
68 KiB

%% 12pt font size, PhD thesis, LFCS, print twosided, new chapters on right page
\documentclass[12pt,phd,lfcs,twoside,openright,logo,leftchapter,normalheadings]{infthesis}
\shieldtype{0}
%% Packages
\usepackage[utf8]{inputenc} % Enable UTF-8 typing
\usepackage[british]{babel} % British English
\usepackage[breaklinks]{hyperref} % Interactive PDF
\usepackage{url}
\usepackage[sort&compress,square,numbers]{natbib} % Bibliography
\usepackage{breakurl}
\usepackage{amsmath} % Mathematics library
\usepackage{amssymb} % Provides math fonts
\usepackage{amsthm} % Provides \newtheorem, \theoremstyle, etc.
\usepackage{mathtools}
\usepackage{pkgs/mathpartir} % Inference rules
\usepackage{pkgs/mathwidth}
\usepackage{stmaryrd} % semantic brackets
\usepackage{array}
\usepackage{float} % Float control
\usepackage{caption,subcaption} % Sub figures support
\DeclareCaptionFormat{underlinedfigure}{#1#2#3\hrulefill}
\captionsetup[figure]{format=underlinedfigure}
\usepackage[T1]{fontenc} % Fixes font issues
%\usepackage{lmodern}
\usepackage[activate=true,
final,
tracking=true,
kerning=true,
spacing=true,
factor=1100,
stretch=10,
shrink=10]{microtype}
\usepackage{enumerate} % Customise enumerate-environments
\usepackage{xcolor} % Colours
\usepackage{xspace} % Smart spacing in commands.
\usepackage{tikz}
\usetikzlibrary{fit,calc,trees,positioning,arrows,chains,shapes.geometric,%
decorations.pathreplacing,decorations.pathmorphing,shapes,%
matrix,shapes.symbols,intersections}
\SetProtrusion{encoding={*},family={bch},series={*},size={6,7}}
{1={ ,750},2={ ,500},3={ ,500},4={ ,500},5={ ,500},
6={ ,500},7={ ,600},8={ ,500},9={ ,500},0={ ,500}}
\SetExtraKerning[unit=space]
{encoding={*}, family={bch}, series={*}, size={footnotesize,small,normalsize}}
{\textendash={400,400}, % en-dash, add more space around it
"28={ ,150}, % left bracket, add space from right
"29={150, }, % right bracket, add space from left
\textquotedblleft={ ,150}, % left quotation mark, space from right
\textquotedblright={150, }} % right quotation mark, space from left
\usepackage[customcolors,shade]{hf-tikz} % Shaded backgrounds.
\hfsetfillcolor{gray!40}
\hfsetbordercolor{gray!40}
%%
%% Theorem environments
%%
\theoremstyle{plain}
\newtheorem{theorem}{Theorem}[chapter]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{definition}[theorem]{Definition}
% Example environment.
\makeatletter
\def\@endtheorem{\hfill$\blacksquare$\endtrivlist\@endpefalse} % inserts a black square at the end.
\makeatother
\theoremstyle{definition}
\newtheorem{example}{Example}[chapter]
%%
%% Load macros.
%%
\input{macros}
%% Information about the title, etc.
% \title{Higher-Order Theories of Handlers for Algebraic Effects}
% \title{Handlers for Algebraic Effects: Applications, Compilation, and Expressiveness}
% \title{Applications, Compilation, and Expressiveness for Effect Handlers}
% \title{Handling Computational Effects}
% \title{Programming Computable Effectful Functions}
% \title{Handling Effectful Computations}
\title{Foundations for Programming and Implementing Effect Handlers}
\author{Daniel Hillerström}
%% If the year of submission is not the current year, uncomment this line and
%% specify it here:
\submityear{2020}
%% Specify the abstract here.
\abstract{%
An abstract\dots
}
%% Now we start with the actual document.
\begin{document}
\raggedbottom
%% First, the preliminary pages
\begin{preliminary}
%% This creates the title page
\maketitle
%% Acknowledgements
\begin{acknowledgements}
List of people to thank
\begin{itemize}
\item Sam Lindley
\item John Longley
\item Christophe Dubach
\item KC Sivaramakrishnan
\item Stephen Dolan
\item Anil Madhavapeddy
\item Gemma Gordon
\item Leo White
\item Andreas Rossberg
\item Robert Atkey
\item Jeremy Yallop
\item Simon Fowler
\item Craig McLaughlin
\item Garrett Morris
\item James McKinna
\item Brian Campbell
\item Paul Piho
\item Amna Shahab
\item Gordon Plotkin
\item Ohad Kammar
\item School of Informatics (funding)
\item Google (Kevin Millikin, Dmitry Stefantsov)
\item Microsoft Research (Daan Leijen)
\end{itemize}
\end{acknowledgements}
%% Next we need to have the declaration.
% \standarddeclaration
\begin{declaration}
I declare that this thesis was composed by myself, that the work
contained herein is my own except where explicitly stated otherwise
in the text, and that this work has not been submitted for any other
degree or professional qualification except as specified.
\end{declaration}
%% Finally, a dedication (this is optional -- uncomment the following line if
%% you want one).
% \dedication{To my mummy.}
\dedication{\emph{To be or to do}}
% \begin{preface}
% A preface will possibly appear here\dots
% \end{preface}
%% Create the table of contents
\setcounter{secnumdepth}{2} % Numbering on sections and subsections
\setcounter{tocdepth}{1} % Show chapters, sections and subsections in TOC
%\singlespace
\tableofcontents
%\doublespace
%% If you want a list of figures or tables, uncomment the appropriate line(s)
% \listoffigures
% \listoftables
\end{preliminary}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Main content %%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%
%% Introduction
%%
\chapter{Introduction}
\label{ch:introduction}
An enthralling introduction\dots
%
Motivation: 1) compiler perspective: unifying control abstraction,
lean runtime, desugaring of async/await, generators/iterators, 2)
giving control to programmers, safer microkernels, everything as a
library.
\section{Thesis outline}
Thesis outline\dots
\section{Typographical conventions}
Explain conventions\dots
\part{Background}
\label{p:background}
\chapter{The state of effectful programming}
\label{ch:related-work}
\section{Type and effect systems}
\section{Monadic programming}
\chapter{Continuations}
\label{ch:continuations}
\section{Zoo of control operators}
Describe how effect handlers fit amongst shift/reset, prompt/control,
callcc, J, catchcont, etc.
\section{Implementation strategies}
\part{Design}
\chapter{An ML-flavoured programming language based on rows}
\label{ch:base-language}
In this chapter we introduce a core calculus, \BCalc{}, which we shall
later use as the basis for exploration of design considerations for
effect handlers. This calculus is based on \CoreLinks{} by
\citet{LindleyC12}, which distils the essence of the functional
multi-tier web-programming language
\Links{}~\cite{CooperLWY06}. \Links{} belongs to the
ML-family~\cite{MilnerTHM97} of programming languages as it features
typical characteristics of ML languages such as a static type system
supporting parametric polymorphism with type inference (in fact Links
supports first-class polymorphism), and its evaluation semantics is
strict. However, \Links{} differentiates itself from the rest of the
ML-family by making crucial use of \emph{row polymorphism} to support
extensible records, variants, and tracking of computational
effects. Thus \Links{} has a rather strong emphasis on structural
types rather than nominal types.
\CoreLinks{} captures all of these properties of \Links{}. Our
calculus \BCalc{} differs in several aspects from \CoreLinks{}. For
example, the underlying formalism of \CoreLinks{} is call-by-value,
whilst the formalism of \BCalc{} is \emph{fine-grain
call-by-value}~\cite{LevyPT03}, which shares similarities with
A-normal form (ANF)~\cite{FlanaganSDF93} as it syntactically
distinguishes between value and computation terms by mandating every
intermediate computation being named. However unlike ANF, fine-grain
call-by-value remains closed under $\beta$-reduction. The reason for
choosing fine-grain call-by-value as our formalism is entirely due to
convenience. As we shall see in Chapter~\ref{ch:unary-handlers}
fine-grain call-by-value is a convenient formalism for working with
continuations. Another point of difference between \CoreLinks{} and
\BCalc{} is that the former models the integrated database query
sublanguage of \Links{}. We do not consider the query sublanguage at
all, and instead our focus is entirely on modelling the interaction
and programming with computational effects.
\section{Syntax and static semantics}
\label{sec:syntax-base-language}
As \BCalc{} is intrinsically typed, we begin by presenting the syntax
of kinds and types in
Section~\ref{sec:base-language-types}. Subsequently in
Section~\ref{sec:base-language-terms} we present the term syntax,
before presenting the formation rules for types in
Section~\ref{sec:base-language-type-rules}.
% Typically the presentation of a programming language begins with its
% syntax. If the language is typed there are two possible starting
% points: Either one presents the term syntax first, or alternatively,
% the type syntax first. Although the choice may seem rather benign
% there is, however, a philosophical distinction to be drawn between
% them. Terms are, on their own, entirely meaningless, whilst types
% provide, on their own, an initial approximation of the semantics of
% terms. This is particularly true in an intrinsic typed system perhaps
% less so in an extrinsic typed system. In an intrinsic system types
% must necessarily be precursory to terms, as terms ultimately depend on
% the types. Following this argument leaves us with no choice but to
% first present the type syntax of \BCalc{} and subsequently its term
% syntax.
\subsection{Types and their kinds}
\label{sec:base-language-types}
%
\begin{figure}
\begin{syntax}
% \slab{Value types} &A,B &::= & A \to C
% \mid \alpha
% \mid \forall \alpha^K.C
% \mid \Record{R}
% \mid [R]\\
% \slab{Computation types}
% &C,D &::= & A \eff E \\
% \slab{Effect types} &E &::= & \{R\}\\
% \slab{Row types} &R &::= & \ell : P;R \mid \rho \mid \cdot \\
% \slab{Presence types} &P &::= & \Pre{A} \mid \Abs \mid \theta\\
% %\slab{Labels} &\ell & & \\
% % \slab{Types} &T &::= & A \mid C \mid E \mid R \mid P \\
% \slab{Kinds} &K &::= & \Type \mid \Row_\mathcal{L} \mid \Presence
% \mid \Comp \mid \Effect \\
% \slab{Label sets} &\mathcal{L} &::=& \emptyset \mid \{\ell\} \uplus \mathcal{L}\\
% %\slab{Type variables} &\alpha, \rho, \theta& \\
% \slab{Type environments} &\Gamma &::=& \cdot \mid \Gamma, x:A \\
% \slab{Kind environments} &\Delta &::=& \cdot \mid \Delta, \alpha:K
\slab{Value types} &A,B \in \ValTypeCat &::= & A \to C
\mid \forall \alpha^K.C
\mid \Record{R} \mid [R]
\mid \alpha \\
\slab{Computation types\!\!}
&C,D \in \CompTypeCat &::= & A \eff E \\
\slab{Effect types} &E \in \EffectCat &::= & \{R\}\\
\slab{Row types} &R \in \RowCat &::= & \ell : P;R \mid \rho \mid \cdot \\
\slab{Presence types\!\!\!\!\!} &P \in \PresenceCat &::= & \Pre{A} \mid \Abs \mid \theta\\
\\
\slab{Types} &T \in \TypeCat &::= & A \mid C \mid E \mid R \mid P \\
\slab{Kinds} &K \in \KindCat &::= & \Type \mid \Comp \mid \Effect \mid \Row_\mathcal{L} \mid \Presence \\
\slab{Label sets} &\mathcal{L} \in \LabelCat &::=& \emptyset \mid \{\ell\} \uplus \mathcal{L}\\\\
\slab{Type environments} &\Gamma \in \TyEnvCat &::=& \cdot \mid \Gamma, x:A \\
\slab{Kind environments} &\Delta \in \KindEnvCat &::=& \cdot \mid \Delta, \alpha:K \\
\end{syntax}
\caption{Syntax of types, kinds, and their environments.}
\label{fig:base-language-types}
\end{figure}
%
Figure~\ref{fig:base-language-types} depicts the syntax for types,
kinds, and their environments.
%
\paragraph{Value types}
We distinguish between values and computations at the level of
types. Value types comprise the function type $A \to C$, which maps
values of type $A$ to computations of type $C$; the polymorphic type
$\forall \alpha^K . C$ is parameterised by a type variable $\alpha$ of
kind $K$; and the record type $\Record{R}$ represents records with
fields constrained by row $R$. Dually, the variant type $[R]$
represents tagged sums constrained by row $R$.
\paragraph{Computation types and effect types}
The computation type $A \eff E$ is given by a value type $A$ and an
effect type $E$, which specifies the effectful operations a
computation inhabiting this type may perform. An effect type
$E = \{R\}$ is constrained by row $R$.
\paragraph{Row types}
Row types play a pivotal role in our type system as effect, record,
and variant types are uniformly given by row types. A \emph{row type}
describes a collection of distinct labels, each annotated by a
presence type. A presence type indicates whether a label is
\emph{present} with type $A$ ($\Pre{A}$), \emph{absent} ($\Abs$) or
\emph{polymorphic} in its presence ($\theta$).
%
Row types are either \emph{closed} or \emph{open}. A closed row type
ends in~$\cdot$, whilst an open row type ends with a \emph{row
variable} $\rho$ (in an effect row we usually use $\varepsilon$
rather than $\rho$ and refer to it as an \emph{effect variable}).
%
The row variable in an open row type can be instantiated with
additional labels. Each label may occur at most once in each row (we
enforce this restriction at the level of kinds). We identify rows up
to the reordering of labels. We assume structural equality on labels.
%
% \begin{mathpar}
% \inferrule*[Lab=\rowlab{Closed}]
% {~}
% {\cdot \equiv_{\mathrm{row}} \cdot}
% \inferrule*[Lab=\rowlab{Open}]
% {~}
% {\rho \equiv_{\mathrm{row}} \rho}
% \inferrule*[Lab=\rowlab{Head}]
% {R \equiv_{\mathrm{row}} R'}
% {\ell:P;R \equiv_{\mathrm{row}} \ell:P;R'}
% \inferrule*[Lab=\rowlab{Swap}]
% {R \equiv_{\mathrm{row}} R'}
% {\ell:P;\ell':P';R \equiv_{\mathrm{row}} \ell':P';\ell:P;R'}
% \end{mathpar}
% %
% The last rule $\rowlab{Swap}$ let us identify rows up to the
% reordering of labels. For instance, the two rows
% $\ell_1 : P_1; \cdots; \ell_n : P_n; \cdot$ and
% $\ell_n : P_n; \cdots ; \ell_1 : P_1; \cdot$ are equivalent.
%
Absent labels in closed rows are redundant.
%
The standard zero and unit types are definable using rows. We define
the zero type as the empty, closed variant $\ZeroType \defas
[\cdot]$. Dually, the unit type is defined as the empty, closed record
type, i.e. $\UnitType \defas \Record{\cdot}$. We shall often omit
$\cdot$ for closed rows.
%
\begin{figure}
\begin{mathpar}
% alpha : K
\inferrule*[Lab=\klab{TyVar}]
{ }
{\Delta, \alpha : K \vdash \alpha : K}
% Computation
\inferrule*[Lab=\klab{Comp}]
{ \Delta \vdash A : \Type \\
\Delta \vdash E : \Effect \\
}
{\Delta \vdash A \eff E : \Comp}
% A -E-> B, A : Type, E : Row, B : Type
\inferrule*[Lab=\klab{Fun}]
{ \Delta \vdash A : \Type \\
\Delta \vdash C : \Comp \\
}
{\Delta \vdash A \to C : \Type}
% forall alpha : K . A : Type
\inferrule*[Lab=\klab{Forall}]
{ \Delta, \alpha : K \vdash C : \Comp}
{\Delta \vdash \forall \alpha^K . \, C : \Type}
% Record
\inferrule*[Lab=\klab{Record}]
{ \Delta \vdash R : \Row_\emptyset}
{\Delta \vdash \Record{R} : \Type}
% Variant
\inferrule*[Lab=\klab{Variant}]
{ \Delta \vdash R : \Row_\emptyset}
{\Delta \vdash [R] : \Type}
% Effect
\inferrule*[Lab=\klab{Effect}]
{ \Delta \vdash R : \Row_\emptyset}
{\Delta \vdash \{R\} : \Effect}
% Present
\inferrule*[Lab=\klab{Present}]
{\Delta \vdash A : \Type}
{\Delta \vdash \Pre{A} : \Presence}
% Absent
\inferrule*[Lab=\klab{Absent}]
{ }
{\Delta \vdash \Abs : \Presence}
% Empty row
\inferrule*[Lab=\klab{EmptyRow}]
{ }
{\Delta \vdash \cdot : \Row_\mathcal{L}}
% Extend row
\inferrule*[Lab=\klab{ExtendRow}]
{ \Delta \vdash P : \Presence \\
\Delta \vdash R : \Row_{\mathcal{L} \uplus \{\ell\}}
}
{\Delta \vdash \ell : P;R : \Row_\mathcal{L}}
\end{mathpar}
\caption{Kinding rules}
\label{fig:base-language-kinding}
\end{figure}
%
\paragraph{Kinds}
The kinds classify the different categories of types. The $\Type$ kind
classifies for value types, $\Presence$ classifies presence
annotations, $\Comp$ classifies computation types, $\Effect$
classifies effect types, and lastly $\Row_{\mathcal{L}}$ classifies
rows.
%
The formation rules for kinds are given in
Figure~\ref{fig:base-language-kinding}. The kinding judgement
$\Delta \vdash T : K$ states that type $T$ has kind $K$ in kind
environment $\Delta$.
%
The row kind is annotated by a set of labels $\mathcal{L}$. We use
this set to track the labels of a given row type to ensure uniqueness
amongst labels in each row type. For example, the kinding rule
$\klab{ExtendRow}$ uses this set to constrain which labels may be
mentioned in the tail of $R$. We shall elaborate on this in
Section~\ref{sec:row-polymorphism}.
\paragraph{Environments}
Kind and type environments are right-extended sequences of bindings. A
kind environment binds type variables to their kinds, whilst a type
environment binds term variables to their types.
\paragraph{Type variable} The type structure has three syntactically
distinct type variables (the kinding system gives us five semantically
distinct notions of type variables). As we sometimes wish to refer
collectively to type variables, we define the set of type variables,
$\TyVarCat$, to be generated by:
%
\[
\TyVarCat \defas
\ba[t]{@{~}l@{~}l}
&\{ A \in \ValTypeCat \mid A \text{ has the form } \alpha \}\\
\cup &\{ R \in \RowCat \mid R \text{ has the form } \rho \}\\
\cup &\{ P \in \PresenceCat \mid P \text{ has the form } \theta \}
\ea
\]
% Value types comprise the function type $A \to C$, whose domain
% is a value type and its codomain is a computation type $B \eff E$,
% where $E$ is an effect type detailing which effects the implementing
% function may perform. Value types further comprise type variables
% $\alpha$ and quantification $\forall \alpha^K.C$, where the quantified
% type variable $\alpha$ is annotated with its kind $K$. Finally, the
% value types also contains record types $\Record{R}$ and variant types
% $[R]$, which are built up using row types $R$. An effect type $E$ is
% also built up using a row type. A row type is a sequence of fields of
% labels $\ell$ annotated with their presence information $P$. The
% presence information denotes whether a label is present $\Pre{A}$ with
% some type $A$, absent $\Abs$, or polymorphic in its presence
% $\theta$. A row type may be either \emph{open} or \emph{closed}. An
% open row ends in a row variable $\rho$ which can be instantiated with
% additional fields, effectively growing the row, whilst a closed row
% ends in $\cdot$, meaning the row cannot grow further.
% The kinds comprise $\Type$ for regular type variables, $\Presence$ for
% presence variables, $\Comp$ for computation type variables, $\Effect$
% for effect variables, and lastly $\Row_{\mathcal{L}}$ for row
% variables. The row kind is annotated by a set of labels
% $\mathcal{L}$. We use this set to track the labels of a given row type
% to ensure uniqueness amongst labels in each row type. We shall
% elaborate on this in Section~\ref{sec:row-polymorphism}.
\subsection{Terms}
\label{sec:base-language-terms}
%
\begin{figure}
\begin{syntax}
\slab{Variables} &x \in \VarCat&&\\
\slab{Values} &V,W \in \ValCat &::= & x
\mid \lambda x^A .\, M \mid \Lambda \alpha^K .\, M
\mid \Record{} \mid \Record{\ell = V;W} \mid (\ell~V)^R \\
& & &\\
\slab{Computations} &M,N \in \CompCat &::= & V\,W \mid V\,T\\
& &\mid& \Let\; \Record{\ell=x;y} = V \; \In \; N\\
& &\mid& \Case\; V \{\ell~x \mapsto M; y \mapsto N\} \mid \Absurd^C~V\\
& &\mid& \Return~V \mid \Let \; x \revto M \; \In \; N\\
\slab{Terms} &t \in \TermCat &::= & x \mid V \mid M
\end{syntax}
\caption{Term syntax of \BCalc{}.}
\label{fig:base-language-term-syntax}
\end{figure}
%
The syntax for terms is given in
Figure~\ref{fig:base-language-term-syntax}. We assume countably
infinite set of names $\VarCat$ from which we draw fresh variable
names at will. We shall typically denote term variables by $x$, $y$,
or $z$.
%
The syntax partitions terms into values and computations.
%
Value terms comprise variables ($x$), lambda abstraction
($\lambda x^A . \, M$), type abstraction ($\Lambda \alpha^K . \, M$),
and the introduction forms for records and variants. Records are
introduced using the empty record $\Record{}$ and record extension
$\Record{\ell = V; W}$, whilst variants are introduced using injection
$(\ell~V)^R$, which injects a field with label $\ell$ and value $V$
into a row whose type is $R$. We include the row type annotation in
order to support bottom-up type reconstruction.
All elimination forms are computation terms. Abstraction and type
abstraction are eliminated using application ($V\,W$) and type
application ($V\,A$) respectively.
%
The record eliminator $(\Let \; \Record{\ell=x;y} = V \; \In \; N)$
splits a record $V$ into $x$, the value associated with $\ell$, and
$y$, the rest of the record. Non-empty variants are eliminated using
the case construct ($\Case\; V\; \{\ell~x \mapsto M; y \mapsto N\}$),
which evaluates the computation $M$ if the tag of $V$ matches
$\ell$. Otherwise it falls through to $y$ and evaluates $N$. The
elimination form for empty variants is ($\Absurd^C~V$).
%
There is one computation introduction form, namely, the trivial
computation $(\Return~V)$ which returns value $V$. Its elimination
form is the expression $(\Let \; x \revto M \; \In \; N)$ which evaluates
$M$ and binds the result value to $x$ in $N$.
%
%
As our calculus is intrinsically typed, we annotate terms with type or
kind information (term abstraction, type abstraction, injection,
operations, and empty cases). However, we shall omit these annotations
whenever they are clear from context.
\paragraph{Free variables} We define the function
$\FV : \TermCat \to \VarCat$ to compute the free variables of any
given term.
%
\[
\bl
\ba[t]{@{~}l@{~}c@{~}l}
\begin{eqs}
\FV(x) &\defas& \{x\}\\
\FV(\lambda x^A.M) &\defas& \FV(M) \setminus \{x\}\\
\FV(\Lambda \alpha^K.M) &\defas& \FV(M)\\[1.0ex]
\FV(V\,W) &\defas& \FV(V) \cup \FV(W)\\
\FV(\Return~V) &\defas& \FV(V)\\
\end{eqs}
& \qquad\qquad &
\begin{eqs}
\FV(\Record{}) &\defas& \emptyset\\
\FV(\Record{\ell = V; W}) &\defas& \FV(V) \cup \FV(W)\\
\FV((\ell~V)^R) &\defas& \FV(V)\\[1.0ex]
\FV(V\,T) &\defas& \FV(V)\\
\FV(\Absurd^C~V) &\defas& \FV(V)\\
\end{eqs}
\ea\\
\begin{eqs}
\FV(\Let\;x \revto M \;\In\;N) &\defas& \FV(M) \cup (\FV(N) \setminus \{x\})\\
\FV(\Let\;\Record{\ell=x;y} = V\;\In\;N) &\defas& \FV(V) \cup (\FV(N) \setminus \{x, y\})\\
\FV(\Case~V~\{\ell\,x \mapsto M; y \mapsto N\} &\defas& \FV(V) \cup (\FV(M) \setminus \{x\}) \cup (\FV(N) \setminus \{y\})
\end{eqs}
\el
\]
\subsection{Typing rules}
\label{sec:base-language-type-rules}
%
\begin{figure}
Values
\begin{mathpar}
% Variable
\inferrule*[Lab=\tylab{Var}]
{x : A \in \Gamma}
{\typv{\Delta;\Gamma}{x : A}}
% Abstraction
\inferrule*[Lab=\tylab{Lam}]
{\typ{\Delta;\Gamma, x : A}{M : C}}
{\typv{\Delta;\Gamma}{\lambda x^A .\, M : A \to C}}
% Polymorphic abstraction
\inferrule*[Lab=\tylab{PolyLam}]
{\typv{\Delta,\alpha : K;\Gamma}{M : C} \\
\alpha \notin \FTV(\Gamma)
}
{\typv{\Delta;\Gamma}{\Lambda \alpha^K .\, M : \forall \alpha^K . \,C}}
\\
% unit : ()
\inferrule*[Lab=\tylab{Unit}]
{ }
{\typv{\Delta;\Gamma}{\Record{} : \Record{}}}
% Extension
\inferrule*[Lab=\tylab{Extend}]
{ \typv{\Delta;\Gamma}{V : A} \\
\typv{\Delta;\Gamma}{W : \Record{\ell:\Abs;R}}
}
{\typv{\Delta;\Gamma}{\Record{\ell=V;W} : \Record{\ell:\Pre{A};R}}}
% Inject
\inferrule*[Lab=\tylab{Inject}]
{\typv{\Delta;\Gamma}{V : A}}
{\typv{\Delta;\Gamma}{(\ell~V)^R : [\ell : \Pre{A}; R]}}
\end{mathpar}
Computations
\begin{mathpar}
% Application
\inferrule*[Lab=\tylab{App}]
{\typv{\Delta;\Gamma}{V : A \to C} \\
\typv{\Delta;\Gamma}{W : A}
}
{\typ{\Delta;\Gamma}{V\,W : C}}
% Polymorphic application
\inferrule*[Lab=\tylab{PolyApp}]
{\typv{\Delta;\Gamma}{V : \forall \alpha^K . \, C} \\
\Delta \vdash A : K
}
{\typ{\Delta;\Gamma}{V\,A : C[A/\alpha]}}
% Split
\inferrule*[Lab=\tylab{Split}]
{\typv{\Delta;\Gamma}{V : \Record{\ell : \Pre{A};R}} \\\\
\typ{\Delta;\Gamma, x : A, y : \Record{\ell : \Abs; R}}{N : C}
}
{\typ{\Delta;\Gamma}{\Let \; \Record{\ell =x;y} = V\; \In \; N : C}}
% Case
\inferrule*[Lab=\tylab{Case}]
{ \typv{\Delta;\Gamma}{V : [\ell : \Pre{A};R]} \\\\
\typ{\Delta;\Gamma,x:A}{M : C} \\\\
\typ{\Delta;\Gamma,y:[\ell : \Abs;R]}{N : C}
}
{\typ{\Delta;\Gamma}{\Case \; V \{\ell\; x \mapsto M;y \mapsto N \} : C}}
% Absurd
\inferrule*[Lab=\tylab{Absurd}]
{\typv{\Delta;\Gamma}{V : []}}
{\typ{\Delta;\Gamma}{\Absurd^C \; V : C}}
% Return
\inferrule*[Lab=\tylab{Return}]
{\typv{\Delta;\Gamma}{V : A}}
{\typc{\Delta;\Gamma}{\Return \; V : A}{E}}
\\
% Let
\inferrule*[Lab=\tylab{Let}]
{\typc{\Delta;\Gamma}{M : A}{E} \\
\typ{\Delta;\Gamma, x : A}{N : C}
}
{\typ{\Delta;\Gamma}{\Let \; x \revto M\; \In \; N : C}}
\end{mathpar}
\caption{Typing rules}
\label{fig:base-language-type-rules}
\end{figure}
%
\dhil{There is some rendering issue with T-labels in the typing rules.}
%
The typing rules are given by
Figure~\ref{fig:base-language-type-rules}. In each typing rule, we
implicitly assume that each type is well-kinded with respect to the
kinding environment $\Delta$.
\paragraph{Typing values} The \tylab{Var} rule states that a variable
$x$ has type $A$ if $x$ is bound to $A$ in the type environment
$\Gamma$. The \tylab{Lam} rules states that a lambda value
$(\lambda x.M)$ has type $A \to C$ if the computation $M$ has type $C$
assuming $x : A$. In the \tylab{PolyLam} rule we make use of the set
of \emph{free type variables} ($\FTV$) to ensure that we do not
inadvertently capture a free type variable from the context.
%
We define $\FTV$ by mutual induction over type environments, $\Gamma$,
and the type structure, $T$. Note that we always work up to
$\alpha$-conversion~\cite{Church32} of types.
%
\[
\ba[t]{@{~}l@{~~~~~~}c@{~}l}
\multicolumn{3}{c}{\begin{eqs}
\FTV &:& \TypeCat \to \TyVarCat
\end{eqs}}\\
\ba[t]{@{}l}
\begin{eqs}
% \FTV &:& \ValTypeCat \to \TyVarCat\\
\FTV(\alpha) &\defas& \{\alpha\}\\
\FTV(\forall \alpha^K.C) &\defas& \FTV(C) \setminus \{\alpha\}\\
\FTV(A \to C) &\defas& \FTV(A) \cup \FTV(C)\\
\FTV(A \eff E) &\defas& \FTV(A) \cup \FTV(E)\\
\FTV(\{R\}) &\defas& \FTV(R)\\
\FTV(\Record{R}) &\defas& \FTV(R)\\
\FTV([R]) &\defas& \FTV(R)\\
% \FTV(l:P;R) &\defas& \FTV(P) \cup \FTV(R)\\
% \FTV(\Pre{A}) &\defas& \FTV(A)\\
% \FTV(\Abs) &\defas& \emptyset\\
% \FTV(\theta) &\defas& \{\theta\}
\end{eqs}\ea & &
\begin{eqs}
% \FTV([R]) &\defas& \FTV(R)\\
% \FTV(\Record{R}) &\defas& \FTV(R)\\
% \FTV(\{R\}) &\defas& \FTV(R)\\
% \FTV &:& \RowCat \to \TyVarCat\\
\FTV(\cdot) &\defas& \emptyset\\
\FTV(\rho) &\defas& \{\rho\}\\
\FTV(l:P;R) &\defas& \FTV(P) \cup \FTV(R)\\
% \FTV &:& \PresenceCat \to \TyVarCat\\
\FTV(\theta) &\defas& \{\theta\}\\
\FTV(\Abs) &\defas& \emptyset\\
\FTV(\Pre{A}) &\defas& \FTV(A)\\
\end{eqs}\\\\
\multicolumn{3}{c}{\begin{eqs}
\FTV &:& \TyEnvCat \to \TyVarCat\\
\FTV(\cdot) &\defas& \emptyset\\
\FTV(\Gamma,x : A) &\defas& \FTV(\Gamma) \cup \FTV(A)
\end{eqs}}
% \begin{eqs}
% \FTV(\theta) &\defas& \{\theta\}\\
% \FTV(\Abs) &\defas& \emptyset\\
% \FTV(\Pre{A}) &\defas& \FTV(A)
% \end{eqs} & &
% \begin{eqs}
% \FTV(\cdot) &\defas& \emptyset\\
% \FTV(\Gamma,x : A) &\defas& \FTV(\Gamma) \cup \FTV(A)
% \end{eqs}
\ea
\]
%
Thus the rule states that a type abstraction $(\Lambda \alpha. M)$ has
type $\forall \alpha.C$ if the computation $M$ has type $C$ assuming
$\alpha : K$ and $\alpha$ does not appear in the free type variables
of current type environment $\Gamma$. The \tylab{Unit} rule provides
the basis for all records as it simply states that the empty record
has type unit. The \tylab{Extend} rule handles record
extension. Supposing we wish to extend some record $\Record{W}$ with
$\ell = V$, that is $\Record{\ell = V; W}$. This extension has type
$\Record{\ell : \Pre{A};R}$ if and only if $V$ is well-typed and we
can ascribe $W : \Record{\ell : \Abs; R}$. Since
$\Record{\ell : \Abs; R}$ must be well-kinded with respect to
$\Delta$, the label $\ell$ cannot be mentioned in $W$, thus $\ell$
cannot occur more than once in the record. Similarly, the dual rule
\tylab{Inject} states that the injection $(\ell~V)^R$ has type
$[\ell : \Pre{A}; R]$ if the payload $V$ is well-typed. Again since
$[\ell : \Pre{A}; R]$ is well-kinded, it must be that $\ell$ is not
mentioned by $R$. In other words, the tag cannot be injected twice.
\paragraph{Typing computations}
The \tylab{App} rule states that an application $V\,W$ has computation
type $C$ if the abstractor term $V$ has type $A \to C$ and the
argument term $W$ has type $A$, that is both the argument type and the
domain type of the abstractor agree.
%
The type application rule \tylab{PolyApp} tells us that a type
application $V\,A$ is well-typed whenever the abstractor term $V$ has
the polymorphic type $\forall \alpha^K.C$ and the type $A$ has kind
$K$. This rule makes use of type substitution. We write $C[A/\alpha]$
to mean substitute some type $A$ for some type variable $\alpha$ in
some type $C$. We define type substitution as a ternary function
defined as follows.
%
\[
\begin{eqs}
-[-/-] &:& \TypeCat \times \TypeCat \times \TyVarCat \to \TypeCat\\
(A \eff E)[B/\beta] &\defas& A[B/\beta] \eff E[B/\beta]\\
(A \to C)[B/\beta] &\defas& A[B/\beta] \to C[B/\beta]\\
(\forall \alpha^K.C)[B/\beta] &\defas& \forall \alpha^K.C[B/\beta] \quad \text{if } \alpha \neq \beta \text{ and } \alpha \notin \FTV(B)\\
\alpha[B/\beta] &\defas& \begin{cases}
B & \text{if } \alpha = \beta\\
\alpha & \text{otherwise}
\end{cases}\\
\Record{R}[B/\beta] &\defas& \Record{R[B/\beta]}\\
{[R]}[B/\beta] &\defas& [R[B/\beta]]\\
\{R\}[B/\beta] &\defas& \{R[B/\beta]\}\\
\cdot[B/\beta] &\defas& \cdot\\
\rho[B/\beta] &\defas& \begin{cases}
B & \text{if } \rho = \beta\\
\rho & \text{otherwise}
\end{cases}\\
(\ell : P;R)[B/\beta] &\defas& (\ell : P[B/\beta]; R[B/\beta])\\
\theta[B/\beta] &\defas& \begin{cases}
B & \text{if } \rho = \beta\\
\theta & \text{otherwise}
\end{cases}\\
\Abs[B/\beta] &\defas& \Abs\\
\Pre{A}[B/\beta] &\defas& \Pre{A[B/\beta]}
\end{eqs}
\]
%
The \tylab{Split} rule handles typing of record destructing. When
splitting a record term $V$ on some label $\ell$ binding it to $x$ and
the remainder to $y$. The label we wish to split on must be present
with some type $A$, hence we require that
$V : \Record{\ell : \Pre{A}; R}$. This restriction prohibits us for
splitting on an absent or presence polymorphic label. The
continuation of the splitting, $N$, must then have some computation
type $C$ subject to the following restriction: $N : C$ must be
well-typed under the additional assumptions $x : A$ and
$y : \Record{\ell : \Abs; R}$, statically ensuring that it is not
possible to split on $\ell$ again in the continuation $N$.
%
The \tylab{Case} rule is similar, but has two possible continuations:
the success continuation, $M$, and the fall-through continuation, $N$.
The label being matched must be present with some type $A$ in the type
of the scrutinee, thus we require $V : [\ell : \Pre{A};R]$. The
success continuation has some computation $C$ under the assumption
that the binder $x : A$, whilst the fall-through continuation also has
type $C$ it is subject to the restriction that the binder
$y : [\ell : \Abs;R]$ which statically enforces that no subsequent
case split in $N$ can match on $\ell$.
%
The \tylab{Absurd} states that we can ascribe any computation type to
the term $\Absurd~V$ if $V$ has the empty type $[]$.
%
The trivial computation term is typed by the \tylab{Return} rule,
which says that $\Return\;V$ has computation type $A \eff E$ if the
value $V$ has type $A$.
%
The \tylab{Let} rule types let bindings. The computation being bound,
$M$, must have computation type $A \eff E$, whilst the continuation,
$N$, must have computation $C$ subject to the additional assumption
that the binder $x : A$.
\section{Dynamic semantics}
\label{sec:base-language-dynamic-semantics}
%
\begin{figure}
\begin{reductions}
\semlab{App} & (\lambda x^A . \, M) V &\reducesto& M[V/x] \\
\semlab{TyApp} & (\Lambda \alpha^K . \, M) A &\reducesto& M[A/\alpha] \\
\semlab{Split} & \Let \; \Record{\ell = x;y} = \Record{\ell = V;W} \; \In \; N &\reducesto& N[V/x,W/y] \\
\semlab{Case_1} &
\Case \; (\ell~V)^R \{ \ell \; x \mapsto M; y \mapsto N\} &\reducesto& M[V/x] \\
\semlab{Case_2} &
\Case \; (\ell~V)^R \{ \ell' \; x \mapsto M; y \mapsto N\} &\reducesto& N[(\ell~V)^R/y], \hfill\quad \text{if } \ell \neq \ell' \\
\semlab{Let} &
\Let \; x \revto \Return \; V \; \In \; N &\reducesto& N[V/x] \\
\semlab{Lift} &
\EC[M] &\reducesto& \EC[N], \hfill\quad \text{if } M \reducesto N \\
\end{reductions}
\begin{syntax}
\slab{Evaluation contexts} & \mathcal{E} \in \EvalCat &::=& [\,] \mid \Let \; x \revto \mathcal{E} \; \In \; N
\end{syntax}
%%\[
% Evaluation context lift
%% \inferrule*[Lab=\semlab{Lift}]
%% { M \reducesto N }
%% { \mathcal{E}[M] \reducesto \mathcal{E}[N]}
%% \]
\caption{Contextual small-step semantics}
\label{fig:base-language-small-step}
\end{figure}
%
In this section we present the dynamic semantics of \BCalc{}. We
choose to use a contextual small-step semantics, since in conjunction
with fine-grain call-by-value, it yields a considerably simpler
semantics than the traditional structural operational semantics
(SOS)~\cite{Plotkin04a}, because only the rule for let bindings admits
a continuation whereas in ordinary call-by-value SOS each congruence
rule admits a continuation.
%
The semantics are based on a substitution model of computation. Thus,
before presenting the reduction rules, we define an adequate
substitution function. As usual we work up to
$\alpha$-conversion~\cite{Church32} of terms in $\BCalc{}$.
%
\paragraph{Term substitution}
We write $M[V/x]$ for the substitution of some value $V$ for some
variable $x$ in some computation term $M$. We use the same notation
for substitution on values, i.e. $W[V/x]$ denotes the substitution of
$V$ for $x$ in some value $W$. We define substitution as a ternary
function, whose signature is given by
%
\[
-[-/-] : \TermCat \times \ValCat \times \VarCat \to \CompCat,
\]
%
and we realise it by pattern matching on the first argument.
%
\[
\begin{eqs}
x[V/y] &\defas& \begin{cases}
V & \text{if } x = y\\
x & \text{otherwise }
\end{cases}\\
(\lambda x^A.M)[V/y] &\defas& \lambda x^A.M[V/y] \quad \text{if } x \neq y \text{ and } x \notin \FV(V)\\
(\Lambda \alpha^K. M)[V/y] &\defas& \Lambda \alpha^K. M[V/y]\\
\Unit[V/y] &\defas& \Unit\\
\Record{\ell = W; W'}[V/y] &\defas& \Record{\ell = W[V/y]; W'[V/y]}\\
(\ell~W)^R[V/y] &\defas& (\ell~W[V/y])^R\\
(W\,W')[V/y] &\defas& W[V/y]\,W'[V/y]\\
(W\,T)[V/y] &\defas& W[V/y]~T\\
(\ba[t]{@{}l}
\Let\;\Record{\ell = x; y} = W\\
\In\;N)[V/z]
\ea &\defas&
\ba[t]{@{~}l}
\Let\;\Record{\ell = x; y} = W[V/z]\\
\In\;N[V/z]
\ea \quad
\ba[t]{@{}l}
\text{if } x \neq z, y \neq z,\\
\text{and } x,y\notin \FV(V)
\ea\\
(\Case\;(\ell~W)^R\{
\ba[t]{@{}l}
\ell~x \mapsto M\\
; y \mapsto N \})[V/z]
\ea
&\defas&
\Case\;(\ell~W[V/z])^R\{
\ba[t]{@{}l}
\ell~x \mapsto M[V/z]\\
; y \mapsto N[V/z] \}
\ea\quad
\ba[t]{@{}l}
\text{if } x \neq z, y \neq z,\\
\text{and } x, y \notin \FV(V)
\ea\\
(\Let\;x \revto M \;\In\;N)[V/y] &\defas& \Let\;x \revto M[V/y] \;\In\;N[V/y] \quad\text{if } x \neq y \text{ and } x \notin \FV(V)
\end{eqs}
\]
%
% \begin{cases}
% \Let\;x \revto M[V/y]\;\In\;N & \text{if } x = y\\
% \Let\;x \revto M[V/y]\;\In\;N[V/y] & \text{otherwise}
% \end{cases}
% \end{eqs}
%
We write $t[t_0/x_0,\dots,t_n/x_n]$ to mean the simultaneous
substitution of $t_0$ for $x_0$ up to $t_n$ for $x_n$ in $t$.
%
\paragraph{Reduction semantics}
The reduction relation $\reducesto : \CompCat \pto \CompCat$ is defined
on computation terms. Figure~\ref{fig:base-language-small-step}
depicts the reduction rules. The application rules \semlab{App} and
\semlab{TyApp} eliminates a lambda and type abstraction, respectively,
by substituting the argument for the parameter in their body
computation $M$.
%
Record splitting is handled by the \semlab{Split} rule: splitting on
some label $\ell$ binds the payload $V$ to $x$ and the remainder $W$
to $y$ in the continuation $N$.
%
Disjunctive case splitting is handled by the two rules
\semlab{Case_1} and \semlab{Case_2}. The former rule handles the
success case, when the scrutinee's tag $\ell$ matches the tag of the
success clause, thus binds the payload $V$ to $x$ and proceeds to
evaluate the continuation $M$. The latter rule handles the
fall-through case, here the scrutinee gets bounds to $y$ and
evaluation proceeds with the continuation $N$.
%
The \semlab{Let} rule eliminates a trivial computation term
$\Return\;V$ by substituting $V$ for $x$ in the continuation $N$.
%
\paragraph{Evaluation contexts}
Recall from Section~\ref{sec:base-language-terms},
Figure~\ref{fig:base-language-term-syntax} that the syntax of let
bindings allows a general computation term $M$ to occur on the right
hand side of the binding, i.e. $\Let\;x \revto M \;\In\;N$. Thus we
are seemingly stuck in the general case, as the \semlab{Let} rule only
applies if the right hand side is a trivial computation.
%
However, it is at this stage we make use of the notion of
\emph{evaluation contexts} due to \citet{Felleisen87}. An evaluation
context is syntactic construction which decompose the dynamic
semantics into a set of base rules (i.e. the rules presented thus far)
and an inductive rule, which enables us to focus on a particular
computation term, $M$, in some larger context, $\EC$, and reduce it in
the said context to another computation $N$ if $M$ reduces outside out
the context to that particular $N$. In our formalism, we call this
rule \semlab{Lift}. Evaluation contexts are generated from the empty
context $[~]$ and let expressions $\Let\;x \revto \EC \;\In\;N$.
For now the choices of using fine-grain call-by-value and evaluation
contexts may seem odd, if not arbitrary at this stage; the reader may
wonder with good reason why we elect to use fine-grain call-by-value
over ordinary call-by-value. In Chapter~\ref{ch:unary-handlers} we
will reap the benefits from our design choices, as we shall see that
the combination of fine-grain call-by-value and evaluation contexts
provide the basis for a convenient, simple semantic framework for
working with continuations.
\section{Metatheoretic properties of \BCalc{}}
\label{sec:base-language-metatheory}
Thus far we have defined the syntax, static semantics, and dynamic
semantics of \BCalc{}. In this section, we finish the definition of
\BCalc{} by stating and proving some standard metatheoretic properties
about the language.
%
We begin by showing that substitutions preserve typability.
%
\begin{lemma}[Preservation of typing under substitution]\label{lem:base-language-subst}
Let $\sigma$ be any type substitution and $V \in \ValCat$ be any
value and $M \in \CompCat$ a computation such that
$\typ{\Delta;\Gamma}{V : A}$ and $\typ{\Delta;\Gamma}{M : C}$, then
$\typ{\Delta;\sigma~\Gamma}{\sigma~V : \sigma~A}$ and
$\typ{\Delta;\sigma~\Gamma}{\sigma~M : \sigma~C}$.
\end{lemma}
%
\begin{proof}
By induction on the typing derivations.
\end{proof}
%
\dhil{It is clear to me at this point, that I want to coalesce the
substitution functions. Possibly define them as maps rather than ordinary functions.}
The reduction semantics satisfy a \emph{unique decomposition}
property, which guarantees the existence and uniqueness of complete
decomposition for arbitrary computation terms into evaluation
contexts.
%
\begin{lemma}[Unique decomposition]\label{lem:base-language-uniq-decomp}
For any computation $M \in \CompCat$ it holds that $M$ is either
stuck or there exists a unique evaluation context $\EC \in \EvalCat$
and a redex $N \in \CompCat$ such that $M = \EC[N]$.
\end{lemma}
%
\begin{proof}
By structural induction on $M$.
\begin{description}
\item[Base step] $M = N$ where $N$ is either $\Return\;V$,
$\Absurd^C\;V$, $V\,W$, or $V\,T$. In either case take
$\EC = [\,]$ such that $M = \EC[N]$.
\item[Inductive step]
%
There are several cases to consider. In each case we must find an
evaluation context $\EC$ and a computation term $M'$ such that
$M = \EC[M']$.
\begin{itemize}
\item[Case] $M = \Let\;\Record{\ell = x; y} = V\;\In\;N$: Take $\EC = [\,]$ such that $M = \EC[\Let\;\Record{\ell = x; y} = V\;\In\;N]$.
\item[Case] $M = \Case\;V\,\{\ell\,x \mapsto M'; y \mapsto N\}$:
Take $\EC = [\,]$ such that
$M = \EC[\Case\;V\,\{\ell\,x \mapsto M'; y \mapsto N\}]$.
\item[Case] $M = \Let\;x \revto M' \;\In\;N$: By the induction
hypothesis it follows that $M'$ is either stuck or it
decomposes (uniquely) into an evaluation context $\EC'$ and a
redex $N'$. If $M$ is stuck, then take
$\EC = \Let\;x \revto [\,] \;\In\;N$ such that $M =
\EC[M']$. Otherwise take $\EC = \Let\;x \revto \EC'\;\In\;N$
such that $M = \EC[N']$.
\end{itemize}
\end{description}
\end{proof}
%
The calculus enjoys a rather strong \emph{progress} property, which
states that \emph{every} closed computation term reduces to a trivial
computation term $\Return\;V$ for some value $V$. In other words, any
realisable function in \BCalc{} is effect-free and total.
%
\begin{definition}[Computation normal form]\label{def:base-language-comp-normal}
A computation $M \in \CompCat$ is said to be \emph{normal} if it is
of the form $\Return\; V$ for some value $V \in \ValCat$.
\end{definition}
%
\begin{theorem}[Progress]\label{thm:base-language-progress}
Suppose $\typ{}{M : C}$, then there exists $\typ{}{N : C}$, such
that $M \reducesto^\ast N$ and $N$ is normal.
\end{theorem}
%
\begin{proof}
Proof by induction on typing derivations.
\end{proof}
%
\begin{corollary}
Every closed computation term in \BCalc{} is terminating.
\end{corollary}
%
The calculus also satisfies the \emph{preservation} property,
which states that if some computation $M$ is well-typed and reduces to
some other computation $M'$, then $M'$ is also well-typed.
%
\begin{theorem}[Preservation]\label{thm:base-language-preservation}
Suppose $\typ{\Gamma}{M : C}$ and $M \reducesto M'$, then
$\typ{\Gamma}{M' : C}$.
\end{theorem}
%
\begin{proof}
Proof by induction on typing derivations.
\end{proof}
\section{A primitive effect: recursion}
\label{sec:base-language-recursion}
%
As evident from Theorem~\ref{thm:base-language-progress} \BCalc{}
admit no computational effects. As a consequence every realisable
program is terminating. Thus the calculus provide a solid and minimal
basis for studying the expressiveness of any extension, and in
particular, which primitive effects any such extension may sneak into
the calculus.
However, we cannot write many (if any) interesting programs in
\BCalc{}. The calculus is simply not expressive enough. In order to
bring it closer to the ML-family of languages we endow the calculus
with a fixpoint operator which introduces recursion as a primitive
effect. We dub the resulting calculus \BCalcRec{}.
%
First we augment the syntactic category of values with a new
abstraction form for recursive functions.
%
\begin{syntax}
& V,W \in \ValCat &::=& \cdots \mid~ \tikzmarkin{rec1} \Rec \; f^{A \to C} \, x.M \tikzmarkend{rec1}
\end{syntax}
%
The $\Rec$ construct binds the function name $f$ and its argument $x$
in the body $M$. Typing of recursive functions is standard and
entirely straightforward.
%
\begin{mathpar}
\inferrule*[Lab=\tylab{Rec}]
{\typ{\Delta;\Gamma,f : A \to C, x : A}{M : C}}
{\typ{\Delta;\Gamma}{(\Rec \; f^{A \to C} \, x . M) : A \to C}}
\end{mathpar}
%
The reduction semantics are similarly simple.
%
\begin{reductions}
\semlab{Rec} &
(\Rec \; f^{A \to C} \, x.M)\,V &\reducesto& M[(\Rec \; f^{A \to C}\,x.M)/f, V/x]
\end{reductions}
%
Every occurrence of $f$ in $M$ is replaced by the recursive abstractor
term, while every $x$ in $M$ is replaced by the value argument $V$.
The introduction of recursion means we obtain a slightly weaker
progress theorem as some programs may now diverge.
%
\begin{theorem}[Progress]
\label{thm:base-rec-language-progress}
Suppose $\typ{}{M : C}$, then there exists $\typ{}{N : C}$, such
that $M \reducesto^\ast N$ either diverges or $N\not\reducesto$ and
$N$ is normal.
\end{theorem}
%
\begin{proof}
Similar to the proof of Theorem~\ref{thm:base-language-progress}.
\end{proof}
\subsection{Tracking divergence via the effect system}
\label{sec:tracking-div}
%
With the $\Rec$-operator in \BCalcRec{} we can now implement the
customary factorial function.
%
\[
\bl
\dec{fac} : \Int \to \Int \eff \emptyset\\
\dec{fac} \defas \Rec\;f~n.
\ba[t]{@{}l}
\Let\;is\_zero \revto n = 0\;\In\\
\If\;is\_zero\;\Then\; \Return\;1\\
\Else\;\ba[t]{@{~}l}
\Let\; n' \revto n - 1 \;\In\\
\Let\; m \revto f~n' \;\In\\
n * m
\ea
\ea
\el
\]
%
The $\dec{fac}$ function computes $n!$ for any non-negative integer
$n$. If $n$ is negative then $\dec{fac}$ diverges as the function will
repeatedly select the $\Else$-branch in the conditional
expression. Thus this function is not total on its domain. Yet the
effect signature does not alert us about the potential divergence. In
fact, in this particular instance the effect row on the computation
type is empty, which might deceive the doctrinaire to think that this
function is `pure'. Whether this function is pure or impure depend on
the precise notion of purity -- which we have yet to choose. In
Section~\ref{sec:notions-of-purity} we shall make clear the notion of
purity that we have mind, however, first let us briefly illustrate how
we might utilise the effect system to track divergence.
The key to track divergence is to modify the \tylab{Rec} to inject
some primitive operation into the effect row.
%
\begin{mathpar}
\inferrule*[Lab=$\tylab{Rec}^\ast$]
{\typ{\Delta;\Gamma,f : A \to B\eff\{\dec{Div}:\Zero\}, x : A}{M : B\eff\{\dec{Div}:\Zero\}}}
{\typ{\Delta;\Gamma}{(\Rec \; f^{A \to B\eff\{\dec{Div}:\Zero\}} \, x .M) : A \to B\eff\{\dec{Div}:\Zero\}}}
\end{mathpar}
%
In this typing rule we have chosen to inject an operation named
$\dec{Div}$ into the effect row of the computation type on the
recursive binder $f$. The operation is primitive, because it can never
be directly invoked, rather, it occurs as a side-effect of applying a
$\Rec$-definition.
%
Using this typing rule we get that
$\dec{fac} : \Int \to \Int \eff \{\dec{Div}:\Zero\}$. Consequently,
every application-site of $\dec{fac}$ must now permit the $\dec{Div}$
operation in order to type check.
%
\begin{example}
We will use the following suspended computation to demonstrate
effect tracking in action.
%
\[
\bl
\lambda\Unit. \dec{fac}~3
\el
\]
%
The computation calculates $3!$ when forced.
%
We will now give a typing derivation for this computation to
illustrate how the application of $\dec{fac}$ causes its effect row
to be propagated outwards. Let
$\Gamma = \{\dec{fac} : \Int \to \Int \eff \{\dec{Div}:\Zero\}\}$.
%
\begin{mathpar}
\inferrule*[Right={\tylab{Lam}}]
{\inferrule*[Right={\tylab{App}}]
{\typ{\emptyset;\Gamma,\Unit:\Record{}}{\dec{fac} : \Int \to \Int \eff \{\dec{Div}:\Zero\}}\\
\typ{\emptyset;\Gamma,\Unit:\Record{}}{3 : \Int}
}
{\typc{\emptyset;\Gamma,\Unit:\Record{}}{\dec{fac}~3 : \Int}{\{\dec{Div}:\Zero\}}}
}
{\typ{\emptyset;\Gamma}{\lambda\Unit.\dec{fac}~3} : \Unit \to \Int \eff \{\dec{Div}:\Zero\}}
\end{mathpar}
%
The information that the computation applies a possibly divergent
function internally gets reflected externally in its effect
signature.
\end{example}
%
A possible inconvenience of the current formulation of
$\tylab{Rec}^\ast$ is that it recursion cannot be mixed with other
computational effects. The reason being that the effect row on
$A \to B\eff \{\dec{Div}:\Zero\}$ is closed. Thus in a practical
general-purpose programming language implementation it is likely be
more convenient to leave the tail of the effect row open as to allow
recursion to be used in larger effect contexts. The rule formulation
is also rather coarse as it renders every $\Rec$-definition as
possibly divergent -- even definitions that are obviously
non-divergent such as the $\Rec$-variation of the identity function:
$\Rec\;f\,x.x$. A practical implementation could utilise a static
termination checker~\cite{Walther94} to obtain more fine-grained
tracking of divergence.
% By fairly lightweight means we can obtain a finer analysis of
% $\Rec$-definitions by simply having an additional typing rule for
% the application of $\Rec$.
% %
% \begin{mathpar}
% \inferrule*[lab=$\tylab{AppRec}^\ast$]
% { E' = \{\dec{Div}:\Zero\} \uplus E\\
% \typ{\Delta}{E'}\\\\
% \typ{\Delta;\Gamma}{\Rec\;f^{A \to B \eff E}\,x.M : A \to B \eff E}\\
% \typ{\Delta;\Gamma}{W : A}
% }
% {\typ{\Delta;\Gamma}{(\Rec\;f^{A \to B \eff E}\,x.M)\,W : B \eff E'}}
% \end{mathpar}
% %
\subsection{Notions of purity}
\label{sec:notions-of-purity}
The term `pure' is heavily overloaded in the programming literature.
%
\dhil{In this thesis we use the Haskell notion of purity.}
\section{Row polymorphism}
\label{sec:row-polymorphism}
\dhil{A discussion of alternative row systems}
\section{Type and effect inference}
\dhil{While I would like to detail the type and effect inference, it
may not be worth the effort. The reason I would like to do this goes
back to 2016 when Richard Eisenberg asked me about how we do effect
inference in Links.}
\chapter{Unary handlers}
\label{ch:unary-handlers}
%
In this chapter we study various flavours of unary effect
handlers~\cite{PlotkinP13}, that is handlers of a single
computation. Concretely, we shall study four variations of effect
handlers: in Section~\ref{sec:unary-deep-handlers} we augment the base
calculus \BCalc{} with \emph{deep} effect handlers yielding the
calculus \HCalc{}; subsequently in
Sections~\ref{sec:unary-parameterised-handlers} and
\ref{sec:unary-default-handlers} we refine \HCalc{} with two practical
relevant kinds of handlers, namely, \emph{parameterised} and
\emph{default} handlers. The former is a specialisation of a
particular class of deep handlers, whilst the latter is important for
programming at large. Finally in
Section~\ref{sec:unary-shallow-handlers} we study \emph{shallow}
effect handlers which are an alternative to deep effect handlers.
% , First we endow \BCalc{}
% with a syntax for performing effectful operations, yielding the
% calculus \EffCalc{}. On its own the calculus is not very interesting,
% however, as the sole addition of the ability to perform effectful
% operations does not provide any practical note-worthy
% expressiveness. However, as we augment the calculus with different
% forms of effect handlers, we begin be able to implement interesting
% that are either difficult or impossible to realise in \BCalc{} in
% direct-style. Concretely, we shall study four variations of effect
% handlers, each as a separate extension to \EffCalc{}: deep, default,
% parameterised, and shallow handlers.
\section{Deep handlers}
\label{sec:unary-deep-handlers}
%
Programming with effect handlers is a dichotomy of \emph{performing}
and \emph{handling} of effectful operations -- or alternatively a
dichotomy of \emph{constructing} and \emph{destructing}. An operation
is a constructor of an effect without a predefined semantics. A
handler destructs effects by pattern-matching on their operations. By
matching on a particular operation, a handler instantiates the said
operation with a particular semantics of its own choosing. The key
ingredient to make this work in practice is \emph{delimited
control}~\cite{Landin65,Landin65a,Landin98,FelleisenF86,DanvyF90}. Performing
an operation reifies the remainder of the computation up to the
nearest enclosing handler of the said operation.
As our starting point we take the regular base calculus, \BCalc{},
without the recursion operator. We elect to do so to understand
exactly which primitive effects deep handlers bring into our resulting
calculus.
%
Deep handlers are defined as folds (catamorphisms) over computation
trees, meaning they provide a uniform semantics to the handled
operations of a given computation. In contrast, shallow handlers are
defined as case-splits over computation trees, and thus, allow a
nonuniform semantics to be given to operations. We will discuss this
last point in greater detail in
Section~\ref{sec:unary-shallow-handlers}.
\subsection{Performing effectful operations}
\label{sec:eff-language-perform}
An effectful operation is a purely syntactic construction, which has
no predefined dynamic semantics. The introduction form for effectful
operations is a computation term.
%
\begin{syntax}
&M,N \in \CompCat &::=& \cdots \mid~ \tikzmarkin{do1} (\Do \; \ell~V)^E \tikzmarkend{do1}
\end{syntax}
%
Informally, the intended behaviour of the new computation term
$(\Do\; \ell~V)^E$ is that it performs some operation $\ell$ with
value argument $V$. Thus the $\Do$-construct is similar to the typical
exception-signalling $\keyw{throw}$ or $\keyw{raise}$ constructs found
in programming languages with support for exceptions. The term is
annotated with an effect row $E$, providing a handle to obtain the
current effect context. We make use of this effect row during typing:
%
\begin{mathpar}
\inferrule*[Lab=\tylab{Do}]
{ E = \{\ell : A \to B; R\} \\
\typ{\Delta}{E} \\
\typ{\Delta;\Gamma}{V : A}
}
{\typc{\Delta;\Gamma}{(\Do \; \ell \; V)^E : B}{E}}
\end{mathpar}
%
An operation invocation is only well-typed if the effect row $E$ is
well-kinded and contains the said operation with a present type; in
other words, the current effect context permits the operation. The
argument type $A$ must be the same as the domain of the operation.
%
We slightly abuse notation by using the function space arrow, $\to$,
to also denote the operation space. Although, the function and
operation spaces are separate entities, we may think of the operation
space as a subspace of the function space in which every effect row is
empty, that is every operation has a type on the form
$A \to B \eff \emptyset$. The reason that the effect row is always
empty is that any effects an operation might have are ultimately
conferred by a handler.
\dhil{Introduce notation for computation trees.}
\subsection{Handling of effectful operations}
%
We now present the elimination form for effectful operations, namely,
handlers.
%
First we define notation for handler kinds and types.
%
\begin{syntax}
\slab{Kinds} &K \in \KindCat &::=& \cdots \mid~ \tikzmarkin{handlerkinds1} \Handler \tikzmarkend{handlerkinds1}\\
\slab{Handler types} &F \in \HandlerTypeCat &::=& C \Harrow D\\
\slab{Types} &T \in \TypeCat &::=& \cdots \mid~ \tikzmarkin{typeswithhandler} F \tikzmarkend{typeswithhandler}
\end{syntax}
%
The syntactic category of kinds is augmented with the kind $\Handler$
which we will ascribe to handler types $F$. The arrow, $\Harrow$,
denotes the handler space. Type structure suggests that a handler is a
transformer of computations, as by the types it takes a computation of
type $C$ and returns another computation of type $D$. We use the
following kinding rule to check that a handler type is well-kinded.
%
\begin{mathpar}
\inferrule*[Lab=\klab{Handler}]
{ \Delta \vdash C : \Comp \\
\Delta \vdash D : \Comp
}
{\Delta \vdash C \Harrow D : \Handler}
\end{mathpar}
%
With the type structure in place, we present the term syntax for
handlers. The addition of handlers augments the syntactic category of
computations with a new computation form as well as introducing a new
syntactic category of handler definitions.
%
\begin{syntax}
\slab{Computations} &M,N \in \CompCat &::=& \cdots \mid~ \tikzmarkin{deephandlers1} \Handle \; M \; \With \; H\tikzmarkend{deephandlers1}\\[1ex]
\slab{Handlers} &H \in \HandlerCat &::=& \{ \Return \; x \mapsto M \}
\mid \{ \ell \; p \; r \mapsto N \} \uplus H\\
\slab{Terms} &t \in \TermCat &::=& \cdots \mid~ \tikzmarkin{handlerdefs} H \tikzmarkend{handlerdefs}
\end{syntax}
%
The handle construct $(\Handle \; M \; \With \; H)$ is the counterpart
to $\Do$. It runs computation $M$ using handler $H$. A handler $H$
consists of a return clause $\{\Return \; x \mapsto M\}$ and a
possibly empty set of operation clauses
$\{\ell \; p_\ell \; r_\ell \mapsto N_\ell\}_{\ell \in \mathcal{L}}$.
%
The return clause $\{\Return \; x \mapsto M\}$ defines how to
interpret the final return value of a handled computation. The
variable $x$ is bound to the final return value in the body $M$.
%
Each operation clause
$\{\ell \; p_\ell \; r_\ell \mapsto N_\ell\}_{\ell \in \mathcal{L}}$
defines how to interpret an invocation of a particular operation
$\ell$. The variables $p_\ell$ and $r_\ell$ are bound in the body
$N_\ell$: $p_\ell$ binds the argument carried by the operation and
$r_\ell$ binds the continuation of the invocation site of $\ell$.
Given a handler $H$, we often wish to refer to the clause for a
particular operation or the return clause; for these purposes we
define two convenient projections on handlers in the metalanguage.
\[
\ba{@{~}r@{~}c@{~}l@{~}l}
\hell &\defas& \{\ell\; p\; r \mapsto N \}, &\quad \text{where } \{\ell\; p\; r \mapsto N \} \in H\\
\hret &\defas& \{\Return\; x \mapsto N \}, &\quad \text{where } \{\Return\; x \mapsto N \} \in H\\
\ea
\]
%
The $\hell$ projection yields the singleton set consisting of the
operation clause in $H$ that handles the operation $\ell$, whilst
$\hret$ yields the singleton set containing the return clause of $H$.
%
We define the \emph{domain} of an handler as the set of operation
labels it handles, i.e.
%
\begin{equations}
\dom &:& \HandlerCat \to \LabelCat\\
\dom(\{\Return\;x \mapsto M\}) &\defas& \emptyset\\
\dom(\{\ell\; p\;r \mapsto M\} \uplus H) &\defas& \{\ell\} \cup \dom(H)
\end{equations}
\subsection{Static semantics}
The typing of effect handlers is slightly more involved than the
typing of the $\Do$-construct.
%
\begin{mathpar}
\inferrule*[Lab=\tylab{Handle}]
{
\typ{\Gamma}{M : C} \\
\typ{\Gamma}{H : C \Harrow D}
}
{\Gamma \vdash \Handle \; M \; \With\; H : D}
%\mprset{flushleft}
\inferrule*[Lab=\tylab{Handler}]
{{\bl
C = A \eff \{(\ell_i : A_i \to B_i)_i; R\} \\
D = B \eff \{(\ell_i : P_i)_i; R\}\\
H = \{\Return\;x \mapsto M\} \uplus \{ \ell_i\;p_i\;r_i \mapsto N_i \}_i
\el}\\\\
\typ{\Delta;\Gamma, x : A}{M : D}\\\\
[\typ{\Delta;\Gamma,p_i : A_i, r_i : B_i \to D}{N_i : D}]_i
}
{\typ{\Delta;\Gamma}{H : C \Harrow D}}
\end{mathpar}
%
%
The \tylab{Handler} rule is where most of the work happens. The effect
rows on the input computation type $C$ and the output computation type
$D$ must mention every operation in the domain of the handler. In the
output row those operations may be either present ($\Pre{A}$), absent
($\Abs$), or polymorphic in their presence ($\theta$), whilst in the
input row they must be mentioned with a present type as those types
are used to type operation clauses.
%
In each operation clause the resumption $r_i$ must have the same
return type, $D$, as its handler. In the return clause the binder $x$
has the same type, $C$, as the result of the input computation.
\subsection{Dynamic semantics}
We augment the operational semantics with two new reduction rules: one
for handling return values and another for handling operations.
%{\small{
\begin{reductions}
\semlab{Ret} &
\Handle \; (\Return \; V) \; \With \; H &\reducesto& N[V/x], \hfill\text{where } \hret = \{ \Return \; x \mapsto N \} \\
\semlab{Op} &
\Handle \; \EC[\Do \; \ell \, V] \; \With \; H
&\reducesto& N[V/p, \lambda y . \, \Handle \; \EC[\Return \; y] \; \With \; H/r], \\
\multicolumn{4}{@{}r@{}}{
\hfill\ba[t]{@{~}r@{~}l}
\text{where}& \hell = \{ \ell \; p \; r \mapsto N \}\\
\text{and} & \ell \notin \BL(\EC)
\ea
}
\end{reductions}%}}%
%
The rule \semlab{Ret} invokes the return clause of the current handler
$H$ and substitutes $V$ for $x$ in the body $N$.
%
The rule \semlab{Op} handles an operation $\ell$, provided that the
handler definition $H$ contains a corresponding operation clause for
$\ell$ and that $\ell$ does not appear in the \emph{bound labels}
($\BL$) of the inner context $\EC$. The bound label condition enforces
that an operation is always handled by the nearest enclosing suitable
handler.
%
Formally, we define the notion of bound labels,
$\BL : \EvalCat \to \LabelCat$, inductively over the structure of
evaluation contexts.
%
\begin{equations}
\BL([~]) &=& \emptyset \\
\BL(\Let\;x \revto \EC\;\In\;N) &=& \BL(\EC) \\
\BL(\Handle\;\EC\;\With\;H) &=& \BL(\EC) \cup \dom(H) \\
\end{equations}
%
To illustrate the necessity of this condition consider the following
example with two nested handlers which both handle the same operation
$\ell$.
%
\[
\bl
\ba{@{~}r@{~}c@{~}l}
H_{\mathsf{inner}} &\defas& \{\ell\;p\;r \mapsto r~42; \Return\;x \mapsto \Return~x\}\\
H_{\mathsf{outer}} &\defas& \{\ell\;p\;r \mapsto r~0;\Return\;x \mapsto \Return~x \}
\ea\medskip\\
\Handle \;
\left(\Handle\; \Do\;\ell~\Record{}\;\With\; H_{\mathsf{inner}}\right)\;
\With\; H_{\mathsf{outer}}
\reducesto^+ \begin{cases}
\Return\;42 & \text{Innermost}\\
\Return\;0 & \text{Outermost}
\end{cases}
\el
\]
%
Without the bound label condition there are two possible results as
the choice of which handler to pick for $\ell$ is ambiguous, meaning
reduction would be nondeterministic. Conversely, with the bound label
condition we obtain that the above term reduces to $\Return\;42$,
because $\ell$ is bound in the computation term of the outermost
$\Handle$.
%
We have made a conscious design decision by always selecting nearest
enclosing suitable handler for any operation. In fact, we have made
the \emph{only} natural and sensible choice as picking any other
handler than the nearest enclosing renders programming with effect
handlers anti-modular. Consider always selecting the outermost
suitable handler, then the meaning of closed program composition
cannot be derived from its immediate constituents. For example,
consider using integer addition as the composition operator to compose
the inner handle expression from above with a copy of itself.
%
\[
\bl
\dec{fortytwo} \defas \Handle\;\Do\;\ell~\Unit\;\With\;H_{\mathsf{inner}} \medskip\\
\EC[\dec{fortytwo} + \dec{fortytwo}] \reducesto^+ \begin{cases}
\Return\; 84 & \text{when $\EC$ is empty}\\
?? & \text{otherwise}
\end{cases}
\el
\]
%
Clearly, if the ambient context $\EC$ is empty, then we can derive the
result by reasoning locally about each constituent separately and
subsequently add their results together to obtain the computation term
$\Return\;84$. However, if the ambient context is nonempty, then we
need to account for the possibility that some handler for $\ell$ could
occur in the context. For instance if
$\EC = \Handle\;[~]\;\With\;H_{\mathsf{outer}}$ then the result would
be $\Return\;0$, which we cannot derive locally from looking at the
constituents. Thus we argue that if we want programming to remain
modular and compositional, then we must necessarily always select the
nearest enclosing suitable handler to handle an operation invocation.
%
\dhil{Effect forwarding (the first condition)}
The metatheoretic properties of $\BCalc$ transfer to $\HCalc$ with
little extra effort, although we must amend the definition of
computation normal forms as there are now two ways in which a
computation term can terminate: successfully returning a value or
getting stuck on an unhandled operation.
%
\begin{definition}[Computation normal forms]
We say that a computation term $N$ is normal with respect to an
effect signature $E$, if $N$ is either of the form $\Return\;V$, or
$\EC[\Do\;\ell\,W]$ where $\ell \in E$ and $\ell \notin \BL(\EC)$.
\end{definition}
%
\begin{theorem}[Progress]
Suppose $\typ{}{M : C}$, then either there exists $\typ{}{N : C}$
such that $M \reducesto^+ N$ and $N$ is normal, or $M$ diverges.
\end{theorem}
%
\begin{theorem}[Preservation]
Suppose $\typ{\Gamma}{M : C}$ and $M \reducesto M'$, then
$\typ{\Gamma}{M' : C}$.
\end{theorem}
\subsection{Coding nontermination}
\subsection{Programming with deep handlers}
\dhil{Exceptions}
\dhil{Reader}
\dhil{State}
\dhil{Nondeterminism}
\section{Parameterised handlers}
\label{sec:unary-parameterised-handlers}
\dhil{Example: Lightweight threads}
\section{Default handlers}
\label{sec:unary-default-handlers}
\section{Shallow handlers}
\label{sec:unary-shallow-handlers}
\subsection{Syntax and static semantics}
\subsection{Dynamic semantics}
\chapter{N-ary handlers}
\label{ch:multi-handlers}
% \section{Syntax and Static Semantics}
% \section{Dynamic Semantics}
\section{Unifying deep and shallow handlers}
\part{Implementation}
\chapter{Continuation passing styles}
\chapter{Abstract machine semantics}
\part{Expressiveness}
\chapter{Computability, complexity, and expressivness}
\label{ch:expressiveness}
\section{Notions of expressiveness}
Felleisen's macro-expressiveness, Longley's type-respecting
expressiveness, Kammar's typability-preserving expressiveness.
\section{Interdefinability of deep and shallow Handlers}
\section{Encoding parameterised handlers}
\chapter{The asymptotic power of control}
\label{ch:handlers-efficiency}
Describe the methodology\dots
\section{Generic search}
\section{Calculi}
\subsection{Base calculus}
\subsection{Handler calculus}
\section{A practical model of computation}
\subsection{Syntax}
\subsection{Semantics}
\subsection{Realisability}
\section{Points, predicates, and their models}
\section{Efficient generic search with effect handlers}
\subsection{Space complexity}
\section{Best-case complexity of generic search without control}
\subsection{No shortcuts}
\subsection{No sharing}
\chapter{Robustness of the asymptotic power of control}
\section{Mutable state}
\section{Exception handling}
\section{Effect system}
\part{Conclusions}
\chapter{Conclusions}
\label{ch:conclusions}
Some profound conclusions\dots
\chapter{Future Work}
\label{ch:future-work}
%%
%% Appendices
%%
% \appendix
%% If you want the bibliography single-spaced (which is allowed), uncomment
%% the next line.
%\nocite{*}
\singlespace
%\nocite{*}
%\printbibliography[heading=bibintoc]
\bibliographystyle{plainnat}
\bibliography{\jobname}
%% ... that's all, folks!
\end{document}