|
|
@ -11887,7 +11887,7 @@ For all shallow handlers $H$, the following context is administrative |
|
|
&\Let\; z \revto |
|
|
&\Let\; z \revto |
|
|
\Handle\; \EC'[\Do\;\ell\;V]\;\With\;\sdtrans{H}\;\In\; |
|
|
\Handle\; \EC'[\Do\;\ell\;V]\;\With\;\sdtrans{H}\;\In\; |
|
|
\Let\;\Record{f;\_} = z\;\In\;f\,\Unit\\ |
|
|
\Let\;\Record{f;\_} = z\;\In\;f\,\Unit\\ |
|
|
\reducesto& \reason{\semlab{Op} using assumption $\ell \notin \EC'$}\\ |
|
|
|
|
|
|
|
|
\reducesto& \reason{\semlab{Op} using assumption $\ell \notin \BL(\EC')$}\\ |
|
|
&\bl \Let\; z \revto |
|
|
&\bl \Let\; z \revto |
|
|
\bl |
|
|
\bl |
|
|
\Let\;r\revto |
|
|
\Let\;r\revto |
|
|
@ -11963,7 +11963,7 @@ $N'$ such that $N' \approxa \sdtrans{N}$ and $M' \reducesto^+ N'$. |
|
|
\lambda\Unit.\Let\;x \revto \Do\;\ell~\sdtrans{V}\;\In\;r~x;\\ |
|
|
\lambda\Unit.\Let\;x \revto \Do\;\ell~\sdtrans{V}\;\In\;r~x;\\ |
|
|
\lambda\Unit.\sdtrans{N_\ell}}[\lambda x. |
|
|
\lambda\Unit.\sdtrans{N_\ell}}[\lambda x. |
|
|
\bl |
|
|
\bl |
|
|
\Let\;z \revto (\lambda y.\Handle\;\sdtrans{E}[\Return\;y]\;\With\;\sdtrans{H})~x\;\In\\ |
|
|
|
|
|
|
|
|
\Let\;z \revto (\lambda y.\Handle\;\sdtrans{\EC}[\Return\;y]\;\With\;\sdtrans{H})~x\;\In\\ |
|
|
\Let\;\Record{f;g} = z\;\In\;f\,\Unit/r,\sdtrans{V}/p]\;\In\; g\,\Unit |
|
|
\Let\;\Record{f;g} = z\;\In\;f\,\Unit/r,\sdtrans{V}/p]\;\In\; g\,\Unit |
|
|
\el |
|
|
\el |
|
|
\el\\ |
|
|
\el\\ |
|
|
@ -11971,13 +11971,13 @@ $N'$ such that $N' \approxa \sdtrans{N}$ and $M' \reducesto^+ N'$. |
|
|
\reducesto^+ &\reason{\semlab{Split}, \semlab{App}}\\ |
|
|
\reducesto^+ &\reason{\semlab{Split}, \semlab{App}}\\ |
|
|
&\sdtrans{N_\ell}[\lambda x. |
|
|
&\sdtrans{N_\ell}[\lambda x. |
|
|
\bl |
|
|
\bl |
|
|
\Let\;z \revto (\lambda y.\Handle\;\sdtrans{E}[\Return\;y]\;\With\;\sdtrans{H})~x\;\In\\ |
|
|
|
|
|
|
|
|
\Let\;z \revto (\lambda y.\Handle\;\sdtrans{\EC}[\Return\;y]\;\With\;\sdtrans{H})~x\;\In\\ |
|
|
\Let\;\Record{f;g} = z\;\In\;f\,\Unit/r,\sdtrans{V}/p] |
|
|
\Let\;\Record{f;g} = z\;\In\;f\,\Unit/r,\sdtrans{V}/p] |
|
|
\el\\ |
|
|
\el\\ |
|
|
=& \reason{by Lemma~\ref{lem:sdtrans-subst}}\\ |
|
|
=& \reason{by Lemma~\ref{lem:sdtrans-subst}}\\ |
|
|
&\sdtrans{N_\ell[\lambda x. |
|
|
&\sdtrans{N_\ell[\lambda x. |
|
|
\bl |
|
|
\bl |
|
|
\Let\;z \revto (\lambda y.\Handle\;E[\Return\;y]\;\With\;H)~x\;\In\\ |
|
|
|
|
|
|
|
|
\Let\;z \revto (\lambda y.\Handle\;\EC[\Return\;y]\;\With\;H)~x\;\In\\ |
|
|
\Let\;\Record{f;g} = z\;\In\;f\,\Unit/r,V/p]} |
|
|
\Let\;\Record{f;g} = z\;\In\;f\,\Unit/r,V/p]} |
|
|
\el |
|
|
\el |
|
|
\end{derivation} |
|
|
\end{derivation} |
|
|
@ -11996,7 +11996,7 @@ $N'$ such that $N' \approxa \sdtrans{N}$ and $M' \reducesto^+ N'$. |
|
|
% |
|
|
% |
|
|
\[ |
|
|
\[ |
|
|
(\bl |
|
|
(\bl |
|
|
\lambda x.\Let\;z \revto (\lambda y.\Handle\;\sdtrans{E}[\Return\;y]\;\With\;\sdtrans{H})~x\;\In\\ |
|
|
|
|
|
|
|
|
\lambda x.\Let\;z \revto (\lambda y.\Handle\;\sdtrans{\EC}[\Return\;y]\;\With\;\sdtrans{H})~x\;\In\\ |
|
|
\Let\;\Record{f;g} = z \;\In\;f\,\Unit)~W \approxa (\lambda y.\sdtrans{\EC}[\Return\;y])~W. |
|
|
\Let\;\Record{f;g} = z \;\In\;f\,\Unit)~W \approxa (\lambda y.\sdtrans{\EC}[\Return\;y])~W. |
|
|
\el |
|
|
\el |
|
|
\] |
|
|
\] |
|
|
@ -12005,7 +12005,7 @@ $N'$ such that $N' \approxa \sdtrans{N}$ and $M' \reducesto^+ N'$. |
|
|
applications of \semlab{App} on the left hand side yield the term |
|
|
applications of \semlab{App} on the left hand side yield the term |
|
|
% |
|
|
% |
|
|
\[ |
|
|
\[ |
|
|
\Let\;z \revto \Handle\;\sdtrans{E}[\Return\;W]\;\With\;\sdtrans{H}\;\In\;\Let\;\Record{f;g} = z \;\In\;f\,\Unit. |
|
|
|
|
|
|
|
|
\Let\;z \revto \Handle\;\sdtrans{\EC}[\Return\;W]\;\With\;\sdtrans{H}\;\In\;\Let\;\Record{f;g} = z \;\In\;f\,\Unit. |
|
|
\] |
|
|
\] |
|
|
% |
|
|
% |
|
|
Define |
|
|
Define |
|
|
|