|
|
|
@ -695,29 +695,6 @@ callcc, J, catchcont, etc. |
|
|
|
|
|
|
|
\subsection{Undelimited operators} |
|
|
|
|
|
|
|
\paragraph{Landin's J operator} |
|
|
|
% |
|
|
|
\begin{mathpar} |
|
|
|
\inferrule* |
|
|
|
{\typ{\Gamma,x:A;B \cons \Delta}{M : B}} |
|
|
|
{\typ{\Gamma;\Delta}{\lambda x.M : A \to B}} |
|
|
|
|
|
|
|
\inferrule* |
|
|
|
{\typ{\Gamma;B \cons \Delta}{\lambda x. M : A \to B}} |
|
|
|
{\typ{\Gamma;B \cons \Delta}{\J\,(\lambda x.M) : \Cont\,\Record{A;B}}} |
|
|
|
|
|
|
|
\inferrule* |
|
|
|
{\typ{\Gamma;\Delta}{V : A} \\ \typ{\Gamma;\Delta}{W : \Cont\,\Record{A;B}}} |
|
|
|
{\typ{\Gamma;\Delta}{\Continue~W~V : B}} |
|
|
|
\end{mathpar} |
|
|
|
% |
|
|
|
\begin{reductions} |
|
|
|
\slab{Dump} & \EC[(\lambda x.M)~V] &\reducesto& \EC[\mathcal{D}[M[V/x]]]\\ |
|
|
|
\slab{Capture} & \EC[\mathcal{D}[\J\,(\lambda x.M)]] &\reducesto& \EC[\mathcal{D}[\cont_{\Record{\EC;\lambda x.M}}]]\\ |
|
|
|
\slab{Resume} & \EC[\Continue~\cont_{\Record{\EC';\lambda x.M}}~V] &\reducesto& \EC'[(\lambda x.M)~V] |
|
|
|
\end{reductions} |
|
|
|
% |
|
|
|
|
|
|
|
\paragraph{Sussman and Steele's catch} |
|
|
|
% |
|
|
|
\begin{mathpar} |
|
|
|
@ -833,6 +810,97 @@ Contrast this result with |
|
|
|
\slab{Resume} & \Continue~\cont_{\EC}~V &\reducesto& \EC[V] |
|
|
|
\end{reductions} |
|
|
|
|
|
|
|
\paragraph{Landin's J operator} |
|
|
|
% |
|
|
|
The J operator was introduced by Peter Landin in 1965 (making it the |
|
|
|
world's \emph{first} first-class control operator) as a means for |
|
|
|
translating jumps and labels in Algol~60 into applicative |
|
|
|
expressions~\cite{Landin65,Landin65a,Landin98}. |
|
|
|
% |
|
|
|
The operator extends the syntactic category of computations with a new |
|
|
|
form. |
|
|
|
% |
|
|
|
\[ |
|
|
|
M,N \in \CompCat ::= \cdots \mid \J\,W |
|
|
|
\] |
|
|
|
% |
|
|
|
The J operator is quite different to the operators mentioned above in |
|
|
|
that the captured continuation is \emph{not} the current continuation, |
|
|
|
but rather, the continuation of the caller. |
|
|
|
% |
|
|
|
To this effect, the continuation object produced by a $\J$ application |
|
|
|
may be thought of as a first-class variation of the return statement |
|
|
|
commonly found in statement-oriented languages. Since it is a |
|
|
|
first-class object it can be passed to another function, meaning that |
|
|
|
any function can endow other functions with the ability to return from |
|
|
|
it, e.g. |
|
|
|
% |
|
|
|
\[ |
|
|
|
\dec{f} \defas \lambda g. \Let\;return \revto \J\,(\lambda x.x) \;\In\; g~return;~\True |
|
|
|
\] |
|
|
|
% |
|
|
|
If the function $g$ does not invoke its argument, then $\dec{f}$ |
|
|
|
returns $\True$, e.g. |
|
|
|
\[ |
|
|
|
\dec{f}~(\lambda return.\False) \reducesto^+ \True |
|
|
|
\] |
|
|
|
% |
|
|
|
However, if $g$ does apply its argument, then the value provided to |
|
|
|
the application becomes the return value of $\dec{f}$, e.g. |
|
|
|
% |
|
|
|
\[ |
|
|
|
\dec{f}~(\lambda return.return~\False) \reducesto^+ \False |
|
|
|
\] |
|
|
|
% |
|
|
|
The function argument provided to $\J$ can intuitively be thought of |
|
|
|
as the expression attached to a return statement in a |
|
|
|
statement-oriented language. |
|
|
|
% |
|
|
|
|
|
|
|
Clearly, the return type of a continuation produced by an $\J$ |
|
|
|
application must be the same as the caller of $\J$. Therefore to track |
|
|
|
the caller type we make use of an additional ordered context |
|
|
|
$\Delta$. This context is extended by the typing rule for |
|
|
|
$\lambda$-abstraction, and its contents are used by the typing rule |
|
|
|
for $\J$-applications. |
|
|
|
% |
|
|
|
\begin{mathpar} |
|
|
|
\inferrule* |
|
|
|
{\typ{\Gamma,x:A;B \cons \Delta}{M : B}} |
|
|
|
{\typ{\Gamma;\Delta}{\lambda x.M : A \to B}} |
|
|
|
|
|
|
|
\inferrule* |
|
|
|
{\typ{\Gamma;B \cons \Delta}{W : A \to B}} |
|
|
|
{\typ{\Gamma;B \cons \Delta}{\J\,W : \Cont\,\Record{A;B}}} |
|
|
|
|
|
|
|
\inferrule* |
|
|
|
{\typ{\Gamma;\Delta}{V : A} \\ \typ{\Gamma;\Delta}{W : \Cont\,\Record{A;B}}} |
|
|
|
{\typ{\Gamma;\Delta}{\Continue~W~V : B}} |
|
|
|
\end{mathpar} |
|
|
|
% |
|
|
|
Any meaningful applications of $\J$ must appear under a |
|
|
|
$\lambda$-abstraction, because the application captures its caller's |
|
|
|
continuation. In order to capture the caller's continuation we |
|
|
|
annotate the evaluation contexts for ordinary applications. |
|
|
|
% |
|
|
|
\begin{reductions} |
|
|
|
\slab{Annotate} & \EC[(\lambda x.M)\,V] &\reducesto& \EC_\lambda[M[V/x]]\\ |
|
|
|
\slab{Capture} & \EC_{\lambda}[\mathcal{D}[\J\,W]] &\reducesto& \EC_{\lambda}[\mathcal{D}[\cont_{\Record{\EC_{\lambda};W}}]]\\ |
|
|
|
\slab{Resume} & \EC[\Continue~\cont_{\Record{\EC';W}}\,V] &\reducesto& \EC'[W\,V] |
|
|
|
\end{reductions} |
|
|
|
% |
|
|
|
$\slab{Capture}$ rule only applies if the application of $\J$ takes |
|
|
|
place in annotated evaluation context. The continuation object |
|
|
|
produced by a $\J$ application encompasses the caller's continuation |
|
|
|
$\EC_\lambda$ and the value argument $W$. |
|
|
|
% |
|
|
|
This continuation object may be invoked in \emph{any} context. An |
|
|
|
invocation discards the current continuation $\EC$ and installs $\EC'$ |
|
|
|
instead with the $\J$-argument $W$ applied to the value $V$. |
|
|
|
\[ |
|
|
|
\Callcc \defas \lambda f. f\,(\J\,(\lambda x.x)) |
|
|
|
\] |
|
|
|
|
|
|
|
\subsection{Delimited operators} |
|
|
|
Delimited control: Control delimiters form the basis for delimited |
|
|
|
control. \citeauthor{Felleisen88} introduced control delimiters in |
|
|
|
@ -916,8 +984,8 @@ undelimited control~\cite{Filinski94} |
|
|
|
\slab{Value} & |
|
|
|
\Catchcont \; f . \Record{V;W} &\reducesto& \Inl\; \Record{V;\lambda\,f. W}\\ |
|
|
|
\slab{Capture} & |
|
|
|
\Catchcont \; f .\EC[\,f\,V] &\reducesto& \Inr\; \Record{V; \cont_{\Record{\EC;\,f}}}\\ |
|
|
|
\slab{Resume} & \Continue~\cont_{\Record{\EC;\,f}}~V &\reducesto& \lambda f.\EC[V] |
|
|
|
\Catchcont \; f .\EC[\,f\,V] &\reducesto& \Inr\; \Record{V; \lambda x. \lambda f. \Continue~\cont_{\EC}~x}\\ |
|
|
|
\slab{Resume} & \Continue~\cont_{\EC}~V &\reducesto& \EC[V] |
|
|
|
\end{reductions} |
|
|
|
|
|
|
|
\paragraph{Shift/reset} |
|
|
|
@ -960,6 +1028,8 @@ Conway, who used coroutines as a code idiom in assembly |
|
|
|
programs~\cite{Knuth97}. Canonical reference for implementing |
|
|
|
coroutines with call/cc~\cite{HaynesFW86}. |
|
|
|
|
|
|
|
\section{Constraining control} |
|
|
|
|
|
|
|
\section{Implementation strategies for first-class control} |
|
|
|
Table~\ref{tbl:ctrl-operators-impls} lists some programming languages |
|
|
|
with support for first-class control operators and their |
|
|
|
|