Browse Source

Notes on J

master
Daniel Hillerström 5 years ago
parent
commit
8500ce5796
  1. 120
      thesis.tex

120
thesis.tex

@ -695,29 +695,6 @@ callcc, J, catchcont, etc.
\subsection{Undelimited operators}
\paragraph{Landin's J operator}
%
\begin{mathpar}
\inferrule*
{\typ{\Gamma,x:A;B \cons \Delta}{M : B}}
{\typ{\Gamma;\Delta}{\lambda x.M : A \to B}}
\inferrule*
{\typ{\Gamma;B \cons \Delta}{\lambda x. M : A \to B}}
{\typ{\Gamma;B \cons \Delta}{\J\,(\lambda x.M) : \Cont\,\Record{A;B}}}
\inferrule*
{\typ{\Gamma;\Delta}{V : A} \\ \typ{\Gamma;\Delta}{W : \Cont\,\Record{A;B}}}
{\typ{\Gamma;\Delta}{\Continue~W~V : B}}
\end{mathpar}
%
\begin{reductions}
\slab{Dump} & \EC[(\lambda x.M)~V] &\reducesto& \EC[\mathcal{D}[M[V/x]]]\\
\slab{Capture} & \EC[\mathcal{D}[\J\,(\lambda x.M)]] &\reducesto& \EC[\mathcal{D}[\cont_{\Record{\EC;\lambda x.M}}]]\\
\slab{Resume} & \EC[\Continue~\cont_{\Record{\EC';\lambda x.M}}~V] &\reducesto& \EC'[(\lambda x.M)~V]
\end{reductions}
%
\paragraph{Sussman and Steele's catch}
%
\begin{mathpar}
@ -833,6 +810,97 @@ Contrast this result with
\slab{Resume} & \Continue~\cont_{\EC}~V &\reducesto& \EC[V]
\end{reductions}
\paragraph{Landin's J operator}
%
The J operator was introduced by Peter Landin in 1965 (making it the
world's \emph{first} first-class control operator) as a means for
translating jumps and labels in Algol~60 into applicative
expressions~\cite{Landin65,Landin65a,Landin98}.
%
The operator extends the syntactic category of computations with a new
form.
%
\[
M,N \in \CompCat ::= \cdots \mid \J\,W
\]
%
The J operator is quite different to the operators mentioned above in
that the captured continuation is \emph{not} the current continuation,
but rather, the continuation of the caller.
%
To this effect, the continuation object produced by a $\J$ application
may be thought of as a first-class variation of the return statement
commonly found in statement-oriented languages. Since it is a
first-class object it can be passed to another function, meaning that
any function can endow other functions with the ability to return from
it, e.g.
%
\[
\dec{f} \defas \lambda g. \Let\;return \revto \J\,(\lambda x.x) \;\In\; g~return;~\True
\]
%
If the function $g$ does not invoke its argument, then $\dec{f}$
returns $\True$, e.g.
\[
\dec{f}~(\lambda return.\False) \reducesto^+ \True
\]
%
However, if $g$ does apply its argument, then the value provided to
the application becomes the return value of $\dec{f}$, e.g.
%
\[
\dec{f}~(\lambda return.return~\False) \reducesto^+ \False
\]
%
The function argument provided to $\J$ can intuitively be thought of
as the expression attached to a return statement in a
statement-oriented language.
%
Clearly, the return type of a continuation produced by an $\J$
application must be the same as the caller of $\J$. Therefore to track
the caller type we make use of an additional ordered context
$\Delta$. This context is extended by the typing rule for
$\lambda$-abstraction, and its contents are used by the typing rule
for $\J$-applications.
%
\begin{mathpar}
\inferrule*
{\typ{\Gamma,x:A;B \cons \Delta}{M : B}}
{\typ{\Gamma;\Delta}{\lambda x.M : A \to B}}
\inferrule*
{\typ{\Gamma;B \cons \Delta}{W : A \to B}}
{\typ{\Gamma;B \cons \Delta}{\J\,W : \Cont\,\Record{A;B}}}
\inferrule*
{\typ{\Gamma;\Delta}{V : A} \\ \typ{\Gamma;\Delta}{W : \Cont\,\Record{A;B}}}
{\typ{\Gamma;\Delta}{\Continue~W~V : B}}
\end{mathpar}
%
Any meaningful applications of $\J$ must appear under a
$\lambda$-abstraction, because the application captures its caller's
continuation. In order to capture the caller's continuation we
annotate the evaluation contexts for ordinary applications.
%
\begin{reductions}
\slab{Annotate} & \EC[(\lambda x.M)\,V] &\reducesto& \EC_\lambda[M[V/x]]\\
\slab{Capture} & \EC_{\lambda}[\mathcal{D}[\J\,W]] &\reducesto& \EC_{\lambda}[\mathcal{D}[\cont_{\Record{\EC_{\lambda};W}}]]\\
\slab{Resume} & \EC[\Continue~\cont_{\Record{\EC';W}}\,V] &\reducesto& \EC'[W\,V]
\end{reductions}
%
$\slab{Capture}$ rule only applies if the application of $\J$ takes
place in annotated evaluation context. The continuation object
produced by a $\J$ application encompasses the caller's continuation
$\EC_\lambda$ and the value argument $W$.
%
This continuation object may be invoked in \emph{any} context. An
invocation discards the current continuation $\EC$ and installs $\EC'$
instead with the $\J$-argument $W$ applied to the value $V$.
\[
\Callcc \defas \lambda f. f\,(\J\,(\lambda x.x))
\]
\subsection{Delimited operators}
Delimited control: Control delimiters form the basis for delimited
control. \citeauthor{Felleisen88} introduced control delimiters in
@ -916,8 +984,8 @@ undelimited control~\cite{Filinski94}
\slab{Value} &
\Catchcont \; f . \Record{V;W} &\reducesto& \Inl\; \Record{V;\lambda\,f. W}\\
\slab{Capture} &
\Catchcont \; f .\EC[\,f\,V] &\reducesto& \Inr\; \Record{V; \cont_{\Record{\EC;\,f}}}\\
\slab{Resume} & \Continue~\cont_{\Record{\EC;\,f}}~V &\reducesto& \lambda f.\EC[V]
\Catchcont \; f .\EC[\,f\,V] &\reducesto& \Inr\; \Record{V; \lambda x. \lambda f. \Continue~\cont_{\EC}~x}\\
\slab{Resume} & \Continue~\cont_{\EC}~V &\reducesto& \EC[V]
\end{reductions}
\paragraph{Shift/reset}
@ -960,6 +1028,8 @@ Conway, who used coroutines as a code idiom in assembly
programs~\cite{Knuth97}. Canonical reference for implementing
coroutines with call/cc~\cite{HaynesFW86}.
\section{Constraining control}
\section{Implementation strategies for first-class control}
Table~\ref{tbl:ctrl-operators-impls} lists some programming languages
with support for first-class control operators and their

Loading…
Cancel
Save