|
|
|
@ -14545,7 +14545,7 @@ $N'$ such that $N' \approxa \sdtrans{N}$ and $M' \reducesto^+ N'$. |
|
|
|
% |
|
|
|
\begin{derivation} |
|
|
|
& \sdtrans{\ShallowHandle\;\EC[\Do\;\ell~V]\;\With\;H}\\ |
|
|
|
=\reducesto^\ast& \reason{\semlab{Op} ($\ell \notin \BL(\sdtrans{\EC})$), $2\times$\semlab{Let},\semlab{Split},\semlab{App}, Lemma~\ref{lem:sdtrans-subst}}\\ |
|
|
|
=\reducesto^+& \reason{\semlab{Op} ($\ell \notin \BL(\sdtrans{\EC})$), $2\times$\semlab{Let},\semlab{Split},\semlab{App}, Lemma~\ref{lem:sdtrans-subst}}\\ |
|
|
|
&\sdtrans{N_\ell[\lambda x. |
|
|
|
\bl |
|
|
|
\Let\;z \revto (\lambda y.\Handle\;\EC[\Return\;y]\;\With\;H)~x\;\In\\ |
|
|
|
@ -14588,9 +14588,16 @@ $N'$ such that $N' \approxa \sdtrans{N}$ and $M' \reducesto^+ N'$. |
|
|
|
\sdtrans{\EC}[\Return\;W]$. |
|
|
|
|
|
|
|
\item Inductive step: Assume $M' \reducesto M''$ and |
|
|
|
$M'' \approxa \sdtrans{\ShallowHandle\;\EC[\Do\;\ell~V]\;\With\;H}$. Take $N' = M''$ then by the induction hypothesis $M' \reducesto N'$ |
|
|
|
|
|
|
|
\item Inductive step: Assume $admin(\EC)$ and |
|
|
|
$M'' \approxa \sdtrans{\ShallowHandle\;\EC[\Do\;\ell~V]\;\With\;H}$. Using a similar argument to above we get that |
|
|
|
\[ |
|
|
|
\sdtrans{\ShallowHandle\;\EC[\Do\;\ell~V]\;\With\;H} |
|
|
|
\reducesto^+ \sdtrans{N_\ell[V/p,\lambda y.\EC[\Return\;y]/r]}. |
|
|
|
\] |
|
|
|
Take $N' = M''$ then by the first induction hypothesis |
|
|
|
$M' \reducesto N'$ and by the second induction hypothesis |
|
|
|
$N' \approxa \sdtrans{N_\ell[V/p,\lambda y.\EC[\Return\;y]/r]}$ as |
|
|
|
desired. |
|
|
|
\item Inductive step: Assume $admin(\EC')$ and |
|
|
|
$M'' \approxa \sdtrans{\ShallowHandle\;\EC[\Do\;\ell~V]\;\With\;H}$. |
|
|
|
\end{enumerate} |
|
|
|
\end{proof} |
|
|
|
|